
vs

Introduction - What’s the objective ?
We’ll compare the efficiency of two data man-
agement tools: TIMi and Spark. To do so, we’ll
measure the execution time required to run
the 22 data transformations that exactly repli-
cates the 22 SQL queries included in the fa-
mous open-source TPC-H benchmark. This
workload is interesting because it’s universally
recognized as representative of the data trans-
formations that are commonly used in the eve-
ryday life of all data scientists.

Why?
"Data scientists" are actually spending more
than 80% of their time to do simple data man-
agement tasks (e.g. research, unification and
data cleaning) (Source: IDG). This fact is also
sometimes called the "80/20 data science di-
lemma" (google it!). Therefore, a fast and user-
friendly solution for high-velocity data transfor-
mation is an important element for the com-
fort, the efficiency and the productivity of any
data scientist. Since TIMi is 39 times faster than
Spark, it’s thus possible to reduce these 80% of
time devoted to data management to only
80/39. This means that the productivity of your
data scientists is multiplied by

About the two contestants
Spark is a well-known platform that is used in
many commercial product as the underlying
computing engine for “big data” transfor-
mations. Spark is thought to be the fastest
data transformation tool in the Hadoop ecosys-
tem (e.g. Spark is recognized to be several or-
der of magnitude faster than Hive). Spark is a
distributed “in-memory” tool that will typically
uses all the combined RAM memory of all the
servers inside the PC cluster to performs the
requested data transformations. For this
benchmark, we coded the data transformations
in Scala. Scala is the native, fastest language
available on Spark. Spark is created using the
Java language.

The data management tool included inside TIMi
is named Anatella. Anatella is created using the
C and assembler language. Anatella is an out-of-
memory tool. It means that the data that you

can manipulate is not limited to your RAM size.

The results
The Table 1 (on the right) contains a summary of
the timing results. The Amdahl’s law states that, in
all distributed/parallel systems, there always exists
an “incompressible runtime” (column B and C) that
severely limits the “speed-up” achievable by a dis-
tributed process (when adding more CPU’s). Inside
Table 1, we used the Amdahl’s law to extrapolate
the Spark runtime on an infinite number of CPU’s
(the result of these extrapolations is in column B).
An illustration of this extrapolation process is given
in Figure 1. The column C contains the same infor-
mation as column B, but expressed as percent:

 .Please note that, nearly all the time,
the column C is above 50% (see the cells marked in

red). This means that, usually, the maximum
speed-up for Spark is 2 (=), whatever the
size of your cluster (since it’s not possible to
reduce the runtime by more than 50% since the
incompressible-runtime is 50%). In comparison,
the average speed-up achieved with Anatella com-
pared to Spark is 39 (). These results
are confirmed by many independent researchers in
the field: For example: The scientific paper named
“Amdahl’s Law in Big Data Analytics: Alive and
Kicking in TPCx-BB (BigBench)” also displays the
same incompressible runtimes (between 20% and

50%). This makes the whole Spark system
nearly unusable since the major Spark promise
(i.e. horizontal scalability: to deliver higher-speed
on a larger infrastructure) is not achieved: it’s just

a catastrophic failure for Spark. In other words:
We observed that, for each TPC-H query, the total
Anatella runtime is largely below the Spark incom-
pressible time (i.e. we always have column D<B or
column E>1). This basically means Anatella already
finished all computations since a long time while
Spark is still busy trying to complete its initializa-

tion/incompressible phase. This means that one
Anatella server is always faster than a Spark
cluster whatever the size of the Cluster.

Scalability
The default strategy used by Anatella to distribute
the workload amongst a cluster of PC (i.e. “run one
query per node”) exhibit an “incompressible

runtime” of (near) zero. This means that
Anatella is the only solution that is truly
infinitively scalable since it can achieve
speed-up ratios over 10000 (while Spark
is limited to a speed-up of 5 because it
cannot run “one query per node” in a
reliable way since it’s an “in-memory” tool).

Total cost of ownership
Adopt TIMi now and benefit from infra-
structure costs that are divided by 22.2
on average! What do you
think about reducing your half-a-million
Amazon/Azure bill to only 22.5K€?
That’s great!

The ultimate showdown
Executive Summary: (1) On all the data-management-benchmarks that we could find, one TIMi server is faster than a Spark cluster,

whatever the size of the cluster (on average, the “speed-up” of TIMi versus Spark is 39). (2) The promise of Spark to be horizontally

scalable is erroneous: Depending on the workload, you can expect to obtain a “speed-up” between 2 and maximum 5, by adding

more nodes to your Spark cluster (even with a 1000 nodes cluster, you won’t get a larger “speed-up”). In opposition, TIMi can com-

monly achieve speed-up over 10000 by adding more nodes. (3) Because of a more efficient engine, TIMi also reduces your architec-

ture costs by a factor of by 22.2 on average. What do you think about reducing your half-a-million Amazon/Azure bill to only 22K€?

(4) Using a more efficient data transformation engine, such as TIMi, means that the efficiency of your data science team is multi-

plied by more than four (5) These key-findings are in-line with the well-known Amdahl’s law about the efficiency of parallel & dis-

tributed architectures. All these results are also consistent with comparable results published inside the scientific literature.

1 1
4.5

20% 80% / 39 22%
= =

+

1
50%

600

700

800

900

1000

1100

1200

1300

1 10 100 1000

[seconds]

[#cpu]

(last 3 points are extrapolated)

Figure 1: Runtime of

Query Q17 in function

of number of CPU’s

22.2

sum column A

sum column D

=

TPC-H
Query

(100GB
data-
base)

Spark (2018/12) Anatella v1.94

running
on

1CPU

 [seconds]

Incompressible
runtime (when

running on
infinite number

of CPU's)

Run
time

[seconds]

Speed-
up vs
Spark
infinite
CPU

[seconds] [percent]

A B C D E

Q1 184 37 20 % 27.1 1.4

Q2 956 649 68 % 5.7 113.5

Q3 929 572 62 % 34.5 16.6

Q4 830 230 28 % 33.7 6.8

Q5 2275 674 30 % 43.7 15.4

Q6 102 21 20 % 6.2 3.3

Q7 1113 762 68 % 45.6 16.7

Q8 1621 1009 62 % 49.3 20.5

Q9 2059 1227 60 % 200 6.1

Q10 1035 699 68 % 38.9 17.9

Q11 441 304 69 % 4.2 71.8

Q12 454 263 58 % 47.7 5.5

Q13 377 143 38 % 105 1.4

Q14 373 275 74 % 3.2 85.5

Q15 error error error 9.7

Q16 839 587 70 % 31.4 18.7

Q17 1255 665 53 % 26.7 24.9

Q18 1135 717 63 % 36.9 19.4

Q19 972 119 12 % 44.1 2.7

Q20 972 643 66 % 21.7 29.6

Q21 3815 2235 59 % 127 17.5

Q22 206 112 55 % 44.5 2.5

B
A

= B
D

=

column B
column C

column A
=

39

column A
average

column D

=

