
vs

Introduction - What’s the objective ?
We’ll compare the execution time for run-
ning common data transformations tasks for
two data management tools: TIMi and Spark.
We’ll also review the strategy used in each
tool to distribute the workload amongst
many different servers (for distributed com-
putation).

Why?
"Data scientists" are actually spending more
than 80% of their time to do simple data
management tasks (e.g. research, unification
and data cleaning) (Source: IDG). This fact is
also sometimes called the "80/20 data sci-
ence dilemma" (google it!). Therefore, a fast
and user-friendly solution for high-velocity
data transformation is an important element
for the comfort, the efficiency and the
productivity of any data scientist. For exam-
ple, if it were possible to reduce to only 8%
these 80% of time devoted to data manage-
ment, the productivity of your data scientists
would be multiplied by a factor of three!

How?
We’ll measure the execution time of a series
of 22 data transformations that exactly repli-
cates the 22 SQL queries included in the fa-
mous TPC-H benchmark. This workload is
universally recognized as “interesting and
representative” of the data transformations
that are commonly used in the everyday life
of all data scientists. We’ll also briefly review
the results obtained during the "Big Data
Bench": This is another, more recent bench-
mark, with a broader scope than the TPC-H.

About the two contestants
Spark is a well-known platform that is used in
many commercial product as the underlying
computing engine for “big data” transfor-
mations. Spark is thought to be the fastest

data transformation tool in the Hadoop eco-
system (e.g. Spark is recognized to be several
order of magnitude faster than Hive). Spark is
a distributed “in-memory” tool that will typi-
cally uses all the combined RAM memory of
all the servers inside the PC cluster to per-
forms the requested data transformations.
For this benchmark, we coded the data trans-
formations in Scala. Scala is the native, fast-
est language available on Spark. Spark is cre-
ated using the Java language.

The data management tool included inside
TIMi is named Anatella (v1.94). Anatella is
created using the C and assembler language.
Anatella is an out-of-memory tool. It means
that the data that you can manipulate is not
limited to your (small) RAM size.

The Setup
To run this benchmark, we used Spark v2.3
and Anatella v1.93 with all defaults settings.
As hardware, we used the “LDLC PC10
WANOMAN”. This is a standard configuration
available on ldlc.com. The specs are:
CPU: Intel Core i7-8086K (4.0 GHz) . It’s a 6
cores –12 threads CPU.
RAM: 16 GB (DDR4—3GHz—CL15)
Storage: Samsung 870 SSD - NVMe - 2TB
The total price of this server is less than 3K€.

The workload
We run the 22 queries from the TPC-H on 4
different database sizes:

The data is stored inside .parquet files (for
Spark) and .gel files (for TIMi). All the files are
stored on a SSD drive (i.e. storing data on
HDFS causes a huge speed penalty for Spark).
We executed all queries in a non-interactive

session (“as if” the queries were running dur-
ing the night). This makes a big difference for
Anatella since Anatella possesses an “inter-
active” mode that allows near instantaneous
computation of the most complex queries
(thanks to a unique advanced data-cache system).

The results
The timing results are given in the Table 1
next page. In this table, some columns have
been computed using the Amdahl’s law. The
Amdahl’s law is illustrated in Figure 1 (bottom
left of the page), it’s based on the following
simple principle: In every distributed process,
there exists an “incompressible” time that is
equals to “s t1”, with:

• “t1” the total runtime on 1 CPU.

• “s” the percentage of the process that is not
parallelizable/distribuable. It’s also named
“incompressible time”. It’s given in the col-
umn “R” in the table next page. Please note
that, in the result table, The Spark incom-
pressible time “s” is never below 20% .

• “s t1” the initialization time in [sec]. It’s given
in column “N” in the table next page.

The Amdahl’s law states the following:

The maximum speed-up that any distributed

process can achieve (when n→ ) is thus:

Since “s” is never below 20%, the maximum
speed-up reachable for Spark is
This means that it’s enough to achieve a
speed-up above 5 with Anatella (...and we
have that: See column O: O is always >5) com-
pared to Spark to get a tool that Spark will
never beat whatever the data size or the size
of the Spark Cluster. In other words: We ob-
served that, for each TPC-H query, the total
Anatella runtime is largely below the Spark
incompressible time “s” (i.e. we always have
column S<R or column G<N). This basically
means Anatella already finished all computa-
tions since a long time while Spark is still busy
trying to complete its initialization phase. This

means that one Anatella server is al-
ways faster than a Spark cluster
whatever the size of the Cluster. There

is no doubt that, once the distributed phase
(illustrated in green on Figure 1, on the left) is
running, the Spark’s engine speed will be al-
most impossible to beat by a single server. ...But

10GB 100GB 1TB Unit: millions of rows 1GB

1.5 15 150 #Customers 0.15

60 600 6000 #Purchases 6

1MaximumSpeedUp
s

=

1 5
20%

=

 on 1 CPU
 on CPU=

 on CPU

Runtime
Speedup n

Runtime n

1

1 1

1

(1) / (1) /

t

st s t n s s n
= =

+ − + −

1

when n→ 

Runtime on 1 CPU = t1 =

s t1 (1-s) t1

t1

s t1 (1-s) t1 /2

t2

Runtime on 2 CPU = t2 =

s t1 (1-s) t1 /3

t3

Runtime on 3 CPU = t3 =

s t1 (1-s) t1 /4

t4

Runtime on 4 CPU = t4 =

Figure 1: Amdahl’s law

“s”: the percentage of the

process that is not paral-

lelizable/distribuable [%].

The ultimate showdown

 1 GB database 10 GB database 100 GB database 1 TB database
 A B C D E F G H I J K L M N O P Q R S T U

TPC-H
Query

Anatella
runtime

[sec]

spark
6CPU

runtime
[sec]

Anatella
speed-

up

Anatella
runtime

[sec]

spark
6CPU

runtime
[sec]

Anatella
speed-

up

Anatella
runtime

[sec]

spark
1CPU

runtime
[sec]

spark
2CPU

runtime
[sec]

spark
3CPU

runtime
[sec]

spark
4CPU

runtime
[sec]

spark
5CPU

runtime
[sec]

spark -
6CPU

runtime
[sec]

Spark
incom-

pressible
time “s t1”

[sec]

Anatella
Speedup
vs Spark
1 CPU
(=J/I)

Anatella
Speedup
vs Spark
6 CPU
(=O/I)

Anatella
Speedup
vs Spark
infinite
CPU
(=P/I)

Spark
incom-

pressible
time

“s” (=P/J)
[%]

“Anatella
Time” /
“Spark
Time

1CPU”
(=I/P) [%]

Anatella
runtime

[sec]

Anatella
RAM
usage

[MByte]

Q1 0.72 17 23 3.70 22 6 27.1 184 99 80 74 63 59 37.4 6.8 2.2 1.4 20.4 % 14.8 % 260 204

Q2 0.16 27 176 0.70 218 310 5.7 956 792 751 700 688 686 649.0 167.2 120.0 113.5 67.9 % 0.6 % 61.5 800

Q3 0.70 19 27 3.72 126 34 34.5 929 732 727 651 643 932 571.9 26.9 27.0 16.6 61.6 % 3.7 % 360 10053

Q4 0.72 20 28 3.70 37 10 33.7 830 436 410 349 350 738 229.5 24.6 21.9 6.8 27.7 % 4.1 % 337 160

Q5 0.70 160 228 4.70 234 50 43.7 2275 1208 1123 994 994 1516 673.6 52.0 34.7 15.4 29.6 % 1.9 % 509 2045

Q6 0.22 14 64 1.20 17 14 6.2 102 55 46 39 37 35 20.7 16.4 5.6 3.3 20.3 % 6.1 % 65.3 154

Q7 0.70 231 329 3.70 214 58 45.6 1113 955 879 852 831 810 761.7 24.4 17.8 16.7 68.4 % 4.1 % 760 8828

Q8 0.70 190 270 4.22 208 49 49.3 1621 1312 1266 1147 1131 1124 1009.3 32.9 22.8 20.5 62.3 % 3.0 % 511 1576

Q9 2.70 283 105 17.73 111 6 200.0 2059 2064 1524 1389 1348 1366 1227.4 10.3 6.8 6.1 59.6 % 9.7 % 2668 7392

Q10 1.22 194 159 4.20 76 18 38.9 1035 849 805 756 766 758 698.6 26.6 19.5 17.9 67.5 % 3.8 % 394 2169

Q11 0.14 91 645 0.72 44 61 4.2 441 365 359 338 320 329 303.9 104.2 77.7 71.8 68.9 % 1.0 % 32.8 2192

Q12 0.70 20 28 3.22 20 6 47.7 454 349 334 306 301 299 262.8 9.5 6.3 5.5 57.9 % 10.5 % 284 1161

Q13 2.20 138 62 13.22 27 2 105.6 377 256 204 203 185 182 142.8 3.6 1.7 1.4 37.9 % 28.0 % 1109 1186

Q14 0.16 15 95 0.39 16 40 3.2 373 317 322 284 295 286 275.4 115.9 88.8 85.5 73.8 % 0.9 % 37.3 257

Q15 0.14 18 126 1.20 21 18 9.7 error error 593 error 568 563 error error 112 2528

Q16 0.39 173 442 3.20 84 26 31.4 839 698 671 647 643 637 587.3 26.7 20.3 18.7 70.0 % 3.7 % 280 11636

Q17 0.39 20 52 2.70 27 10 26.7 1255 972 889 862 779 763 664.8 46.9 28.5 24.9 53.0 % 2.1 % 646 525

Q18 0.72 21 29 4.20 33 8 36.9 1135 943 857 814 802 785 717.4 30.7 21.3 19.4 63.2 % 3.3 % 408 8672

Q19 0.70 15 21 4.70 17 4 44.1 972 331 312 295 290 287 119.2 22.0 6.5 2.7 12.3 % 4.5 % 492 188

Q20 0.39 41 105 1.70 44 26 21.7 972 803 744 732 737 698 643.2 44.7 32.1 29.6 66.2 % 2.2 % 314 885

Q21 1.70 578 339 12.72 204 16 127.7 3815 2976 2912 2629 2611 2469 2235.4 29.9 19.3 17.5 58.6 % 3.3 % 330 329

Q22 0.72 17 23 4.20 24 6 44.5 206 153 153 140 130 128 112.3 4.6 2.9 2.5 54.5 % 21.6 % 595 2027

we are not even trying to do that: With our
single Anatella server, we are just “competing
against” the Spark incompressible time “s”.
...and, unfortunately for Spark, this time “s” is
just terribly BIG! What’s even worse is that,
for most of the queries (see the cells in red in
column R), the Spark incompressible time “s”

is above 50%! Meaning that the maximum
speed-up for Spark is 2, whatever the
size of your cluster. In comparison, the aver-
age speed-up achieved with Anatella com-
pared to Spark (i.e. the average of column O) is 39.4.

Summary on the Spark incompressible time “s”
To summarize, the main finding of this white
paper is the catastrophic large value of the
Spark incompressible time “s” (almost always

above 50%!). This makes the whole
Spark system nearly unusable since the
major Spark promise (i.e. horizontal scalability:
to deliver higher-speed on a larger infrastruc-

ture) is not achieved: it’s a catastrophic failure.

The methodology to compute “s” (i.e. to com-
pute the column N or R) is based on fitting a
line obtained by applying the Amdahl’s law
through the data points collected in columns H
to M. You’ll find more info about this subject
on the Github repository: https://github.com/
Kranf99/TPC-H-Benchmarck-Anatella-Spark

You can intuitively compute yourself “s”: Just
compute the value of the column N, based on
an extrapolation of what you see in the col-
umns H to M. The “s” value (column R) is then
“column N” divided by “column H”.

Furthermore, many independent researchers
observed the same phenomenon about “s”:
For example, we are reproducing in the Table 2
(above on the right) the results obtained inside
Figure 3 of the scientific paper named
“Amdahl’s Law in Big Data Analytics: Alive and
Kicking in TPCx-BB (BigBench)”). You can see
that there are nearly no queries that have
s<20% (in green) and many of them have
s>50% (in red). The best speedup that you can
expect (using more CPU) is thus

Scalability
Let’s now assume that you have an unlimited budg-
et to build your computing cluster. This means that
you can buy 22 servers and run each of the 22 TPC-H
queries simultaneously, one query per server. Ana-
tella is built for that because:

• Anatella has a system that distributes the queries
to execute on many nodes, one query per node.

• This ways of distributing the workload has an ini-
tialization time “s” that is almost zero: i.e. Anatella
just need to send the data transformations to exe-
cute on each node: This is almost instantaneous.
Since the initialization time “s” is zero, this means
that Anatella is truly infinitively scalable and can
achieve speed-up ratios over 10000 (while Spark is
limited to a speed-up of 5).

• Anatella can also execute one unique query using
many servers (in the same way as Spark is doing)
but this is usually not very efficient (it’s still more
efficient than Spark but we are still badly “hurt” by
the incompressible time “s” that is non-null in this case).

TPCx-BB

(Big-

Bench)

Query

SF1000

incom-

pressible

time s”

[%]

SF3000

incom-

pressible

time “s”

[%]

Q1 57 % 43 %

Q2 21 % 20 %

Q3 34 % 30 %

Q4 22 % 22 %

Q6 30 % 20 %

Q8 42 % 29 %

Q10 89 % 75 %

Q11 44 % 35 %

Q12 38 % 26 %

Q13 32 % 24 %

Q14 61 % 37 %

Q15 77 % 57 %

Q16 23 % 16 %

Q17 87 % 74 %

Q18 85 % 56 %

Q19 95 % 84 %

Q21 59 % 33 %

Q22 67 % 41 %

Q24 42 % 31 %

Q29 24 % 15 %

Q30 17 % 16 %

• With an infinite budget, Anatella is still
17.5 times faster than Spark.

• Since Anatella is not an “in-memory” tool, one
Anatella server can process nearly any data
size. In opposition, Spark is not designed to run
“one query per node” (because Spark needs to
use all the RAM of the whole cluster to run
efficiently: i.e. it’s an “in-memory” tool). This
means that, if you attempt to use Spark to run
“one query per node” (as Anatella is doing by
default), you’ll get many failures and instabilities.

Given the fact that Anatella is the only tool that
can reliably use a large cluster of PC’s to achieve
speed-up ratios above 10000, we can really say
that Anatella is the only truly scalable solution.

Total cost of ownership
Adopt TIMi now and benefit from infrastructure
costs that are divided by 22.2 on average!
 What do you think about reducing
your half-a-million Amazon/Azure bill to only
22.5K€? That’s great!

smin

min

1 1
6.6

0.15s
= =

22.2

sum column J

sum column I

 
= 

 

Table 1 Table 2

https://github.com/Kranf99/TPC-H-Benchmarck-Anatella-Spark
https://github.com/Kranf99/TPC-H-Benchmarck-Anatella-Spark

