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Introduction - What’s the objective ?
We’ll compare the execution time for run-
ning common data transformations tasks for 
two data management tools: TIMi and Spark. 
We’ll also review the strategy used in each 
tool to distribute the workload amongst 
many different servers (for distributed com-
putation).  

Why? 
"Data scientists" are actually spending more 
than 80% of their time to do simple data 
management tasks (e.g. research, unification 
and data cleaning) (Source: IDG). This fact is 
also sometimes called the "80/20 data sci-
ence dilemma" (google it!). Therefore, a fast 
and user-friendly solution for high-velocity 
data transformation is an important element 
for the comfort, the efficiency and the 
productivity of any data scientist. For exam-
ple, if it were possible to reduce to only 8% 
these 80% of time devoted to data manage-
ment, the productivity of your data scientists 
would be multiplied by a factor of three! 

How? 
We’ll measure the execution time of a series 
of 22 data transformations that exactly repli-
cates the 22 SQL queries included in the fa-
mous TPC-H benchmark. This workload is 
universally recognized as “interesting and 
representative” of the data transformations 
that are commonly used in the everyday life 
of all data scientists. We’ll also briefly review 
the results obtained during the "Big Data 
Bench": This is another, more recent bench-
mark, with a broader scope than the TPC-H. 

About the two contestants 
Spark is a well-known platform that is used in 
many commercial product as the underlying 
computing engine for “big data” transfor-
mations.  Spark is thought to be the fastest 

data transformation tool in the Hadoop eco-
system (e.g. Spark is recognized to be several 
order of magnitude faster than Hive). Spark is 
a distributed “in-memory” tool that will typi-
cally uses all the combined RAM memory of 
all the servers inside the PC cluster to per-
forms the requested data transformations. 
For this benchmark, we coded the data trans-
formations in Scala. Scala is the native, fast-
est language available on Spark. Spark is cre-
ated using the Java language. 
 

The data management tool included inside 
TIMi is named Anatella (v1.94). Anatella is 
created using the C and assembler language. 
Anatella is an out-of-memory tool. It means 
that the data that you can manipulate is not 
limited to your (small) RAM size.  

The Setup 
To run this benchmark, we used Spark v2.3 
and Anatella v1.93 with all defaults settings. 
As hardware, we used the “LDLC PC10 
WANOMAN”. This is a standard configuration 
available on ldlc.com. The specs are: 
CPU: Intel Core i7-8086K (4.0 GHz) . It’s a 6 
cores –12 threads CPU. 
RAM: 16 GB (DDR4—3GHz—CL15) 
Storage: Samsung 870 SSD - NVMe - 2TB 
The total price of this server is less than 3K€.  

The workload 
We run the 22 queries from the TPC-H on 4 
different database sizes: 

 
 
 
The data is stored inside .parquet files (for 
Spark) and .gel files (for TIMi). All the files are 
stored on a SSD drive (i.e. storing data on 
HDFS causes a huge speed penalty for Spark). 
We executed all queries in a non-interactive 

session (“as if” the queries were running dur-
ing the night). This makes a big difference for 
Anatella since Anatella possesses an  “inter-
active” mode that allows near instantaneous 
computation of the most complex queries 
(thanks to a unique advanced data-cache system). 
 

The results 
The timing results are given in the Table 1 
next page. In this table, some columns have 
been computed using the Amdahl’s law. The 
Amdahl’s law is illustrated in Figure 1 (bottom 
left of the page), it’s based on the following 
simple principle: In every distributed process, 
there exists an “incompressible” time that is 
equals to “s t1”, with:  

• “t1” the total runtime on 1 CPU. 

• “s” the percentage of the process that is not 
parallelizable/distribuable. It’s also named 
“incompressible time”. It’s given in the col-
umn “R” in the table next page. Please note 
that, in the result table, The Spark incom-
pressible time “s” is never below 20% . 

• “s t1” the initialization time in [sec]. It’s given 
in column “N” in the table next page.  

The Amdahl’s law states the following: 

 

 

 

The maximum speed-up that any distributed 

process can achieve (when n→  ) is thus: 

 

Since “s” is never below 20%, the maximum 
speed-up reachable for Spark is   
This means that it’s enough to achieve a 
speed-up above 5 with Anatella (...and we 
have that: See column O: O is always >5) com-
pared to Spark to get a tool that Spark will 
never beat whatever the data size or the size 
of the Spark Cluster. In other words: We ob-
served that,  for each TPC-H query, the total 
Anatella runtime is largely below the Spark 
incompressible time “s” (i.e. we always have 
column S<R or column G<N). This basically 
means Anatella already finished all computa-
tions since a long time while Spark is still busy  
trying to complete its initialization phase. This 

means that one Anatella server is al-
ways faster than a Spark cluster 
whatever the size of the Cluster. There 

is no doubt that, once the distributed phase 
(illustrated in green on Figure 1, on the left) is 
running, the Spark’s engine speed will be al-
most impossible to beat by a single server. ...But 
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Figure 1: Amdahl’s law 
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Q1 0.72 17 23 3.70 22 6 27.1 184 99 80 74 63 59 37.4 6.8 2.2 1.4 20.4 % 14.8 % 260 204 

Q2 0.16 27 176 0.70 218 310 5.7 956 792 751 700 688 686 649.0 167.2 120.0 113.5 67.9 % 0.6 % 61.5 800 

Q3 0.70 19 27 3.72 126 34 34.5 929 732 727 651 643 932 571.9 26.9 27.0 16.6 61.6 % 3.7 % 360 10053 

Q4 0.72 20 28 3.70 37 10 33.7 830 436 410 349 350 738 229.5 24.6 21.9 6.8 27.7 % 4.1 % 337 160 

Q5 0.70 160 228 4.70 234 50 43.7 2275 1208 1123 994 994 1516 673.6 52.0 34.7 15.4 29.6 % 1.9 % 509 2045 

Q6 0.22 14 64 1.20 17 14 6.2 102 55 46 39 37 35 20.7 16.4 5.6 3.3 20.3 % 6.1 % 65.3 154 

Q7 0.70 231 329 3.70 214 58 45.6 1113 955 879 852 831 810 761.7 24.4 17.8 16.7 68.4 % 4.1 % 760 8828 

Q8 0.70 190 270 4.22 208 49 49.3 1621 1312 1266 1147 1131 1124 1009.3 32.9 22.8 20.5 62.3 % 3.0 % 511 1576 

Q9 2.70 283 105 17.73 111 6 200.0 2059 2064 1524 1389 1348 1366 1227.4 10.3 6.8 6.1 59.6 % 9.7 % 2668 7392 

Q10 1.22 194 159 4.20 76 18 38.9 1035 849 805 756 766 758 698.6 26.6 19.5 17.9 67.5 % 3.8 % 394 2169 

Q11 0.14 91 645 0.72 44 61 4.2 441 365 359 338 320 329 303.9 104.2 77.7 71.8 68.9 % 1.0 % 32.8 2192 

Q12 0.70 20 28 3.22 20 6 47.7 454 349 334 306 301 299 262.8 9.5 6.3 5.5 57.9 % 10.5 % 284 1161 

Q13 2.20 138 62 13.22 27 2 105.6 377 256 204 203 185 182 142.8 3.6 1.7 1.4 37.9 % 28.0 % 1109 1186 

Q14 0.16 15 95 0.39 16 40 3.2 373 317 322 284 295 286 275.4 115.9 88.8 85.5 73.8 % 0.9 % 37.3 257 

Q15 0.14 18 126 1.20 21 18 9.7 error error 593 error 568 563 error       error    112 2528 

Q16 0.39 173 442 3.20 84 26 31.4 839 698 671 647 643 637 587.3 26.7 20.3 18.7 70.0 % 3.7 % 280 11636 

Q17 0.39 20 52 2.70 27 10 26.7 1255 972 889 862 779 763 664.8 46.9 28.5 24.9 53.0 % 2.1 % 646 525 

Q18 0.72 21 29 4.20 33 8 36.9 1135 943 857 814 802 785 717.4 30.7 21.3 19.4 63.2 % 3.3 % 408 8672 

Q19 0.70 15 21 4.70 17 4 44.1 972 331 312 295 290 287 119.2 22.0 6.5 2.7 12.3 % 4.5 % 492 188 

Q20 0.39 41 105 1.70 44 26 21.7 972 803 744 732 737 698 643.2 44.7 32.1 29.6 66.2 % 2.2 % 314 885 

Q21 1.70 578 339 12.72 204 16 127.7 3815 2976 2912 2629 2611 2469 2235.4 29.9 19.3 17.5 58.6 % 3.3 % 330 329 

Q22 0.72 17 23 4.20 24 6 44.5 206 153 153 140 130 128 112.3 4.6 2.9 2.5 54.5 % 21.6 % 595 2027 

we are not even trying to do that: With our 
single Anatella server, we are just “competing 
against” the Spark incompressible time “s”. 
...and, unfortunately for Spark, this time “s” is 
just terribly BIG! What’s even worse is that, 
for most of the queries (see the cells in red in 
column R), the Spark incompressible time “s” 

is above 50%! Meaning that the maximum 
speed-up for Spark is 2, whatever the 
size of your cluster. In comparison, the aver-
age speed-up achieved with Anatella com-
pared to Spark (i.e. the average of column O) is 39.4.  
 

Summary on the Spark incompressible time “s” 
To summarize, the main finding of this white 
paper is the catastrophic large value of the 
Spark incompressible time “s” (almost always 

above 50%!). This makes the whole 
Spark system nearly unusable since the  
major Spark promise (i.e. horizontal scalability: 
to deliver higher-speed on a larger infrastruc-

ture) is not achieved: it’s a catastrophic failure.  

The methodology to compute “s” (i.e. to com-
pute the column N or R) is based on fitting a 
line obtained by applying the Amdahl’s law 
through the data points collected in columns H 
to M. You’ll find more info about this subject 
on the Github repository: https://github.com/
Kranf99/TPC-H-Benchmarck-Anatella-Spark  
 

You can intuitively compute yourself “s”: Just 
compute the value of the column N, based on 
an extrapolation of what you see in the col-
umns H to M. The “s” value (column R) is then 
“column N” divided by “column H”. 
 

Furthermore, many independent researchers 
observed the same phenomenon about “s”:  
For example, we are reproducing in the Table 2 
(above on the right) the results obtained inside 
Figure 3 of the scientific paper named 
“Amdahl’s Law in Big Data Analytics: Alive and 
Kicking in TPCx-BB (BigBench)”). You can see 
that there are nearly no queries that have  
s<20% (in green) and many of them have 
s>50% (in red). The best speedup that you can 
expect (using more CPU) is thus  

Scalability 
Let’s now assume that you have an unlimited budg-
et to build your computing cluster. This means that 
you can buy 22 servers and run each of the 22 TPC-H 
queries simultaneously, one query per server. Ana-
tella is built for that because: 

• Anatella has a system that distributes the queries 
to execute on many nodes, one query per node. 

• This ways of distributing the workload has an ini-
tialization time “s” that is almost zero: i.e. Anatella 
just need to send the data transformations to exe-
cute on each node: This is almost instantaneous. 
Since the initialization time “s” is zero, this means 
that Anatella is truly infinitively scalable and can 
achieve speed-up ratios over 10000 (while Spark is 
limited to a speed-up of 5). 

• Anatella can also execute one unique query using 
many servers (in the same way as Spark is doing) 
but this is usually not very efficient (it’s still more 
efficient than Spark but we are still badly “hurt” by 
the incompressible time “s” that is non-null in this case). 
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Q1 57 % 43 % 

Q2 21 % 20 % 

Q3 34 % 30 % 

Q4 22 % 22 % 

Q6 30 % 20 % 

Q8 42 % 29 % 

Q10 89 % 75 % 

Q11 44 % 35 % 
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Q13 32 % 24 % 

Q14 61 % 37 % 

Q15 77 % 57 % 

Q16 23 % 16 % 
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Q19 95 % 84 % 
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• With an infinite budget, Anatella is still 
17.5 times faster than Spark. 

• Since Anatella is not an “in-memory” tool, one 
Anatella server can process nearly any data 
size. In opposition, Spark is not designed to run 
“one query per node” (because Spark needs to 
use all the RAM of the whole cluster to run 
efficiently: i.e. it’s an “in-memory” tool). This 
means that, if you attempt to use Spark to run 
“one query per node” (as Anatella is doing by 
default), you’ll get many failures and instabilities. 

Given the fact that Anatella is the only tool that 
can reliably use a large cluster of PC’s to achieve 
speed-up ratios above 10000, we can really say 
that Anatella is the only truly scalable solution. 
  

Total cost of ownership 
Adopt TIMi now and benefit from infrastructure 
costs that are divided by 22.2 on average!  
                         What do you think about reducing 
your half-a-million Amazon/Azure bill to only 
22.5K€? That’s great!  
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