
SpatiaLite Cookbook
Author: Alessandro Furieri

This work is licensed under the Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

2011 January 28

SpatiaLite Cookbook

using SpatiaLite
a fast and simple practical how-to for absolute beginners

Introduction / Table of Contents
2011 January 28

Manifest declaration: in Computing there are two ill-fated words: database and SQL.

Both terms share a long-established and deeply consolidated bad reputation:
simply pronouncing their name will immediately cause strong negative reactions:
"too much complicated", "I'll never be able to understand all this", "nerds oddities" and so on ...

If all this is indisputably true for plain basic SQL, what's about the most exotic Spatial SQL ?
Obviously, this sounds by far much more complex and intimidating:
for sure only very few specially trained and highly qualified gurus can cope with Spatial SQL, isn't ?

Forget all this, and be open-minded !
(I was quite going to write: Bullshit ! but I don't feel using abusive words could mark a good style start ...)

I suppose all the above prejudices simply are the sad consequence of long standing marketing policies.
For many years the DB market was dominated by highly-priced proprietary software:
and the Spatial DB simply represented a narrowest specialized segment (even more exaggeratedly expensive)
within mainstream DB market.
So the intimidating sacral aura surrounding DB technologies was much more a cover-up story to justify
abnormally high prices than an objective technical fact.
Happily the actual truth is quite different from this: any normally computer-skilled professional people can easily
learn and successfully use both SQL and Spatial SQL;
there is absolutely nothing difficult, obscure or much more complex in using them.

And when I say professional people I don't necessarily intend developers, computer engineers or GIS
professionals:
I'm personally well aware that lots of ecologists, traffic engineers, botanicians, environmental engineers,
zoologists, public administration officers, geologists, geographers, archeologists (and many others) successfully
use Spatial SQL on their daily activities.

So you can now get a sophisticated, standard and really effective Spatial DB absolutely for free and in the easiest
and painless way.
And that's not all: SpatiaLite is strongly integrated into the open source ecosystem.
So you can immediately connect any SpatiaLite's DB using e.g. QGIS (a well known and widespread desktop
GIS app).

You don't believe to my assertions ? Well, try by yourself: come touching with your hands and seeing with your
eyes.
What could be better than this approach to get a first-hand neutral, objective and unbiased experience ?

Following this tutorial will approximately take about an hour or two of your precious time:

SpatiaLite Cookbook

that's not a too much demanding task, and you are not required to perform any exceptional effort.

SpatiaLite is absolutely free (in both meanings: it's free as free beer, and it's free as free speech): so you can get a
quick glance at latest state-of-the-art Spatial SQL technologies in the easiest and simplest way.
And once you've got your own opinion on the basis of your direct first-hand experience, you can then decide by
yourself if Spatial SQL can be useful (one way or the other) for your daily activities.

How this tutorial is structured: think of some Cookbook. At first you are expected to simply acquire some
limited and basic knowledge about:

pottery and kitchen tools: pans, bowls, pots, knives, spoons, whisks
commonly used ingredients: eggs, fish, meat, vegetables, spices, seasonings ...
elementary cooking techniques: boiling, grilling, roasting, deep-frying, creaming ...

Once you have acquired such basic notions you are ready to confront yourself with simple but nutrient and tasty
recipes: we can name this level as family cooking
For many people this is their best effort: that's enough for them, and they'll quit at this point.

But many other will probably discover that after all cooking is funny and really interesting: so they'll surely ask
for something much more sophisticated.
Any good cookbook will certainly end introducing several complex haute cuisine recipes.
May well be you'll never become a real chef de cuisine, but you will amuse yourself anyway, and feel proud of
your cooking skills.

SpatiaLite Cookbook

Commonly used
ingredients

your first Spatial SQL queries
more about Spatial SQL: WKT and WKB
Spatial MetaData Tables
viewing SpatiaLite layers in QGIS

quick technical intro
getting started [installing the software]
building your first Spatial Database
what's a Shapefile ?
what's a Virtual Shapefile ? (and Virtual Tables ...)
what's a Charset encoding ? (and why the hell have I
to take care of such nasty things ?)
what's this SRID stuff ? ... I've never heard this term
before now ...
executing your first SQL queries
basics about SQL queries
understanding aggregate functions

Filippo
TextBox
 SpatiaLite Cookbook Table of contents

Filippo
TextBox
Kitchen tools andcooking techniques

SpatiaLite Cookbook

Author: Alessandro Furieri a.furieri@lqt.it
This work is licensed under the Attribution-ShareAlike 3.0 Unported (CC BY-
SA 3.0) license.

Permission is granted to copy, distribute and/or modify this document under the
terms of the
GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Haute cuisine
recipe #11: Guinness Book of Records
recipe #12: Neighbours
recipe #13: Isolated Islands
recipe #14: Populated Places vs Local Councils
recipe #15: Tightly bounded Populated Places
recipe #16: Railways vs Local Councils
recipe #17: Railways vs Populated Places
recipe #18: Railway Zones as Buffers
recipe #19: merging Local Councils into Counties and
so on ...
recipe #20: Spatial Views
Fine dining experience: Chez Dijkstra

Desserts, spirits, tea
and coffee

System level performace hints
Importing/Exporting Shapefiles (DBF, TXT ...)
Language bindings: [C/C++, Java, Python, PHP ...]

Family cooking
recipe #1: creating a well designed DB
recipe #2: your first JOIN queries
recipe #3: more about JOIN
recipe #4: about VIEW
recipe #5: creating a new table (and related
paraphernalia)
recipe #6: creating a new Geometry column
recipe #7: Insert, Update and Delete
recipe #8: understanding Constraints
recipe #9: ACIDity: undestranding Transactions
recipe #10: wonderful R*Tree Spatial Index

SpatiaLite Cookbook

Technical Introduction
2011 January 28

Quick Techical Intro: in technical terms SpatiaLite is a Spatial DBMS supporting international standards such
as SQL92 and OGC-SFS.

I suppose all the above acronyms sounds really obscure and (maybe) irritating to you.
Don't be afraid: very often obscure technical jargon hides really simple to understand concepts:

a DBMS [Database Management System] is a software designed to store and retrieve arbitrary data in the
most efficient and generalized way.
Actually, lots and lots of huge and highly structured complex data.
SQL [Structured Query Language] is a standardized language supporting DBMS handling:
using SQL statements you can define how your data are organized.
And you can insert, delete or update your data into the DBMS.
Obviously, you can also retrieve (query) your data in a very flexible (and efficient) way.
OGC-SFS [Open Geospatial Consortium - Simple Feature Specification] allows to extend the basic
DBMS / SQL capabilities so to support a special Geometry data-type, thus allowing to deploy a so-called
Spatial DBMS

SpatiaLite is widely based on the top of the very popular SQLite, a lightweight personal DBMS.
They act as a tight couple: SQLite implements a standard SQL92 data engine, while SpatiaLite implements the
standard OGC-SFS core.
Using both them combined you'll then get a complete Spatial DBMS

SQLite/SpatiaLite aren't based on the most common client-server architecture: they adopt a simpler personal
architecture. i.e. the whole SQL engine is directly embedded within the application itself.
This elementary simple and unsophisticated architecture widely simplifies any task related with database
management: you can simply open (or create) a database-file exactly in the same way you are accustomed to
follow when you open a text document or a spreadsheet. There is absolutely no extra-complexity implied in such
tasks.
A complete database (maybe, one containing several millions entities) simply is an ordinary file. You can freely
copy (or even delete) this file at your will without any problem.
And that's not all: such database-file supports a universal architecture, so you can transfer the whole database-
file from one computer to a different one without any special precaution.
The origin and destination computer can actually use completely different operating systems: this has no effect at
all, because database-files are cross-platform portable

Clearly, all this simplicity and lightness has a cost: SQLite/SpatiaLite support for concurrent multiple access is
very rudimentary and poor.
This is what personal DB exactly means; the underlying paradigm is: single user / single application /
standalone workstation

If supporting multiple concurrent access is a main goal for you, then SQLite/SpatiaLite aren't the better choice for
your needing: a most complex client-server DBMS is then strongly required.
Anyway, SpatiaLite is very similar to PostgreSQL/PostGIS (a heavy-weighted client-server open source Spatial
DBMS): so you can freely switch (in a relatively painless way) from the one to the other accordingly to your
actual requirements, choosing each time the best tool to be used.

SpatiaLite Cookbook

Some useful further references:

SQLite home
SpatiaLite home
SQL as understood by SQLite (technical reference)
SpatiaLite Manual (outdated version, but still userful)
Old SpatiaLite Tutorial (outdated version, but still userful)

http://www.sqlite.org/
http://www.gaia-gis.it/spatialite
http://www.sqlite.org/lang.html
http://www.gaia-gis.it/spatialite/spatialite-manual-2.3.1.html
http://www.gaia-gis.it/spatialite/spatialite-tutorial-2.3.1.html

SpatiaLite Cookbook

Getting started [installing the
software]

2011 January 28

This one isn't a theory handbook: this one is a practical how-to tutorial for absolute beginners.
The underlying assumption is that you ignore everything about DBMS, SQL and even GIS.
So we'll begin downloading few resources from the WEB, and we'll then immediately start our operative session:

first we'll download the spatialite_gui software: this one is a simple but powerful tool (supporting graphics,
mouse and so on ..) allowing you to interact with a SpatiaLite database.
then we'll download some publicly available dataset required to build the sample DB we'll use during our
exercises.

Download the app

Start your web browser and go to SpatiaLite's home: http://www.gaia-gis.it/spatialite
The current version (January 2011) is v.2.4.0-RC4, and you can get executable binaries from: http://www.gaia-
gis.it/spatialite-2.4.0-4/binaries.html

Quite obviously the download site layout changes from time to time, so the above URLs may become quickly
outdated.
May be Linux users have to build binaries from themselves starting from sources: in such case read carefully the
appropriate release notes before starting.

Download the sample dataset #1

The first dataset we'll use is the Italian National Census 2001, kindly released by ISTAT (the Italian Census
Bureau).
Point your web browser at http://www.istat.it/ambiente/cartografia/ and then download the following files:

Censimento 2001 - Regioni (Regions):
http://www.istat.it/ambiente/cartografia/regioni2001.zip
Censimento 2001 - Province (Counties):
http://www.istat.it/ambiente/cartografia/province2001.zip
Censimento 2001 - Comuni (Local Councils):
http://www.istat.it/ambiente/cartografia/comuni2001.zip

Download the sample dataset #2

The second required dataset is GeoNames, a worldwide collection of Populated Places.
There are several flavors of this dataset: we'll use cities-1000 (any populated place into the word counting more
than 1,000 peoples).
http://download.geonames.org/export/dump/cities1000.zip

http://www.gaia-gis.it/spatialite
http://www.gaia-gis.it/spatialite-2.4.0-4/binaries.html
http://www.gaia-gis.it/spatialite-2.4.0-4/binaries.html
http://www.istat.it/ambiente/cartografia/
http://www.istat.it/ambiente/cartografia/regioni2001.zip
http://www.istat.it/ambiente/cartografia/province2001.zip
http://www.istat.it/ambiente/cartografia/comuni2001.zip
http://download.geonames.org/export/dump/cities1000.zip

SpatiaLite Cookbook

The spatialite_gui tool doesn't require any installation: simply unzip the compressed image you've just now
downloaded, and click the launch icon. That's all.

Launching the app

SpatiaLite Cookbook

Building your first Spatial
Database

2011 January 28

All right, you just started your first SpatiaLite working session: as you can easily notice, there is no DB currently
connected.

SpatiaLite Cookbook

so you'll now create / connect a new DB file: simply press the corresponding button from the tool bar (a platform
standard file open dialog will soon appear) and set some file name.
Just for uniformity, please name this DB as Italy.sqlite

As you can notice, immediately after creation the DB already contains several tables: all them are system tables
(aka metatables), i.e. tables required to support internal administration.
For now, simply ignoring them at all is the better choice to be done (you are an absolute beginner, isn't ? be
patient, please).
Anyway, now you are connected to a valid DB, so you can now load the first dataset: press the Virtual Shapefile
button on the toolbar, and then select the com2001_s file.

SpatiaLite Cookbook

A dialog box will appear: please, select exactly the above shown settings and confirm.
We'll examine later all this in deeper detail: for now simply trust my authority, and duly copy the suggested values
avoiding to understand at all: that's black magic for now, and that's all.

Once you've loaded the com2001_s dataset you can then continue (always using the same settings) and load both
prov2001_s and reg2001_s files.

SpatiaLite Cookbook

Your database will now look like this: using the left-sided tree-view control is really easy checking tables (and
columns within each table).

You are now ready to complete the initial DB setup: press the Virtual CSV/TXTe button on the toolbar, and then
select the cities1000.txt file.

SpatiaLite Cookbook

A dialog box will appear: please, select exactly the above shown settings and confirm.
This dialog box strongly resembles the one you've already used in order to connect Virtual Shapefiles, but isn't
identical. In this case too we'll examine later any related detail.
All right: now you have three datasets ready to be queried: but it's now time to explain better what we where doing
in the above steps.

SpatiaLite Cookbook

About ESRI Shapefiles and
Virtual Tables

2011 January 28

What's a Shapefile ?

Shapefile is a plain, unsophisticated GIS (geographic data) file format invented many years ago by ESRI:
although initially born in a proprietary environment, this file format has been later publicly disclosed and fully
documented, so it's now really like an open standard format.

It's rather obsolescent nowadays, but it's universally supported. So it represents the lingua franca every GIS
application can surely understand: and not at all surprisingly, SHP is widely used for cross platform neutral data
exchange.

The name itself is rather misleading: after all, Shapefile isn't a simple file. At least three distinct files are required
(identified by .shp .shx .dbf suffixes): if a single file is missing (misnamed / misplaced / malformed / whatsoever
else), then the whole dataset is corrupted and completely not usable.

Some useful further references:

http://en.wikipedia.org/wiki/Shapefile (simple introduction)
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf (technical reference)

What's a Virtual Shapefile (and Virtual Tables) ?

SpatiaLite supports a Virtual Shapefile driver: i.e. it has the capability to support SQL access (read-only mode)
for an external Shapefile, with no need to load any data within the DB itself.
This is really useful during any preliminary database construction step (as in our case).
SQLite/SpatiaLite supports several other different Virtual drivers, such as the Virtual CSV/TXT, the Virtual DBF
and so on ...

Anyway, be warned: Virtual Tables suffer from several limitations (and are often much slower than using
internal DB storage), so they are not at all intended for any serious production task.

http://en.wikipedia.org/wiki/Shapefile
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

SpatiaLite Cookbook

About Charset encodings
2011 January 28

What's a Charset encoding ? (and why the hell have I to take care of such nasty things ?)

Very simply said: any computer really is a stupid machine based on a messy bunch of crappy silicon: it has some
intrinsic capability to understand simple arithmetic and boolean algebra, but it's absolutely unable to understand
text.
You can easily had stored somewhere in your brain the misleading notion that a computer can actually handle
text, but that's not exactly the truth.
To be most precise, it's rather a hocus-pocus finalized to mock you and your limited senses, dumb human being:
any computer simply handles digits, but peripheral devices (screen, keyboard, printer ..) are purposely designed
to give you the (illusory) impression that your PC actually understands text.

All this is an absolutely conventional process: you and your PC must agree about some correspondence table to
be used in order to translate obscure digit sequences into readable words. In technical terms, such a conventional
correspondence table is known as a Charset Encoding.
How many different alphabets are used into the Earth ? lots and lots ... Latin, Greek, Cyrillic, Hebrew, Arabic,
Chinese, Japanese and many others ... and accordingly to this, lots and lots of different Charset Encodings has
been defined during the years (you know: electronic / computer industry is fond of conflicting standard
uncontrolled proliferation).

SQLite/SpatiaLite internally always uses the UTF-8 encoding, which is universal (i.e. you can safely store any
known alphabet within the same DB at the same time): unhappily, Shapefiles (and many other datasets, such as
SVC/TXT files) aren't UTF-8 based (they use some national encoding instead), so you are forced to explicitly
select the Charset encoding to be used each time you have to import (or export) any data. I'm really sorry for this,
but that's reality.

Anyway, consider all this not as a complication, but as a big resource: this way you'll be correctly able to
import/export any arbitrary dataset coming from exotic not-latin countries such as Israel, Japan, Vietnam, Greece
or Russia.
And after all, being able to display multi-alphabet text strings (such as the following one) can make your friends
to become green with envy: Roma,??µ?,???,??

Some useful further references:

http://en.wikipedia.org/wiki/Character_encoding (simple introduction)
http://www.gnu.org/software/libiconv/ (technical reference)

http://en.wikipedia.org/wiki/Character_encoding
http://www.gnu.org/software/libiconv/

SpatiaLite Cookbook

what's this SRID stuff ? ...
I've never heard this term before

now ...
2011 January 28

What's this SRID stuff ? ... I've never heard this term before now ...

Planet Earth is a sphere ... not exactly, planet Earth has an ellipsoidal shape (slightly flattened at poles) ...
oh no, that's absolutely wrong: planet Earth hasn't a geometric regular shape, it actually is a geoid

All the above assertions can be assumed to be true, but at different approximation levels.
Near the Equator differences between a sphere and an ellipsoid are rather slight and quite unnoticeable; but neat both Poles
such differences becomes greater and most easily appreciable.
For many practical purposes differences between an ellipsoid and a geoid are very slim: but for long range aircraft
navigation (or even worse, for satellite positioning), this is too much simplistic and unacceptably approximate.

http://commons.wikimedia.org/wiki/File:Geographic_coordinates_sphere.svg

SpatiaLite Cookbook

Anyway, whatsoever could be the real shape of the Earth, position of each point on the planet surface can precisely
determined simply measuring two angles: longitude and latitude.
In order to set a complete Spatial Reference System [aka SRS] we can use the Poles and the Equator (which after all are
outstanding places by intrinsic astronomic properties): choosing a Prime Meridian on the other side is absolutely
conventional: but since many centuries (Britannia rule the waves ...) adopting the Greenwich Meridian is an obvious
choice.

Any SRS based on long-lat coordinates is known as a Geographic System. Using a Geographic SRS surely grants you
maximum precision and accuracy: but unhappily this fatally implies several undesirable side-effects:

paper sheets (and monitor screens) are absolutely flat; they don't look at all like a sphere
using angles makes measuring distances and areas really difficult and counter-intuitive.

So since many centuries cartographers invented several (conventional) systems enabling to represent spherical surfaces into
a flatten plane: none of them all is the best one.
All them introduce some degree of approximation and deformation: choosing the one or the other implies an absolutely
arbitrary and conventional process: a map projection good to represent small Earth's portions can easily be awful when
used to represent very wide territories, and vice versa.
We'll quickly examine the UTM [Universal Transverse Mercator] map projection, simply because it's really often used.

http://en.wikipedia.org/wiki/File:Usgs_map_traverse_mercator.PNG

SpatiaLite Cookbook

Apparently this map projection introduces severe and not acceptable deformations: but when you carefully focus your
attention on the narrow central fuse, you'll immediately recognize that UTM allows to get a nearly perfect planar projection
of excellent quality.
Anyway all this has a price: the central fuse has to be really narrow (let say, it will span only few degrees on both sides).
As the fuse becomes wider, as much more deformations will become stronger and more evident.

http://en.wikipedia.org/wiki/File:MercTranSph.png

SpatiaLite Cookbook

Accordingly to all the above considerations, UTM defines 60 standard zones, each one covering exactly 6 longitude
degrees.
Merging together two adjacent fuses (12 degrees) obviously reduces accuracy, but is still acceptable for many practical
purposes: exceeding this limit produces really low-quality results, and has to be absolutely avoided.

Attempting to standardize the chaos

During the past two centuries every National State has introduced at least one (and very often, more than one) map
projection system and related SRS: the overall result is absolutely chaotic (and really painful to be handled).

Happily, an international standard is widely adopted so to make easier correctly handling map SRS: the European
Petroleum Survey Group [EPSG] maintains a huge worldwide dataset of more than 3,700 different entries.
Many of them are nowadays obsolete, and simply play a historical role; many others are only useful in very limited
national boundaries.
Anyway, this one is an absolutely impressive collection.
And each single entry within the EPSG dataset is uniquely identified by its numeric ID and descriptive name, so to avoid
any possible confusion and ambiguity.

Any Spatial DBMS requires some SRID-value to be specified for each Geometry: but such SRID simply is a Spatial
Reference ID, and (hopefully) coincides with the corresponding EPSG ID

Just in order to help you understand better this SRID chaos, this is a quite complete list of SRIDs often used in a (small)
Nation such as Italy:

EPSG SRID Name Notes

4326 WGS 84 Geographic [long-lat]; worldwide; used by GPS devices

3003
3004

Monte Mario / Italy zone 1
Monte Mario / Italy zone 2 obsolete (1940) but still commonly used

23032
23033

ED50 / UTM zone 32N
ED50 / UTM zone 33N superseded and rarely used: European Datum 1950

32632
32633

WGS 84 / UTM zone 32N
WGS 84 / UTM zone 33N WGS84, adopting the planar UTM projection

25832 ETRS89 / UTM zone 32N

http://en.wikipedia.org/wiki/File:Utm-zones.jpg

SpatiaLite Cookbook

25833 ETRS89 / UTM zone 33N enhanced evolution of WGS84: official EU standard

And the following examples may help to understand even better:

Town SRID
Coordinates

X (longitude) Y (latitude)

Roma

4326 12.483900 41.894740

3003 1789036.071860 4644043.280244

23032 789036.071860 4644043.280244

32632 789022.867800 4643960.982152

35832 789022.867802 4643960.982036

Milano

4326 9.189510 45.464270

3003 1514815.861095 5034638.873050

23032 514815.861095 5034638.873050

32632 514815.171223 5034544.482565

35832 514815.171223 5034544.482445

As you can easily notice:

WGS84 [4326] coordinates are expressed in decimal degrees, because this one is a Geographic System directly
based on long-lat angles.
on the other side any other system adopts coordinates expressed in meters: all them are projected aka planar
systems.
Y-values look very similar for every planar SRS: that's not surprising, because this value simply represents the
distance from the Equator.
X-values are more dispersed, because different SRSes adopt different false easting origins: i.e. they place their
Prime Meridian in different (conventional) places.
Anyway, any UTM-based SRS gives very closely related values, simply because all them share the same UTM zone
32 definition.
The (small) differences you can notice about different UTM-based SRSes can be easily explained: UTM zone 32 is
always the same, but the underlying ellipsoid changes each time.
Getting a precise measure for ellipsoid's axes isn't an easy task: and obviously during the time several increasingly
better and most accurate estimates has been progressively adopted.

Distance intercurring between
Roma and Milano

SRID Calculated Distance

4326 4.857422

3003 477243.796305

23032 477243.796305

32632 477226.708868

35832 477226.708866

Great Circle 477109.583358

Geodesic 477245.299993

And now we can examine how using different SRSes affects distances:

SpatiaLite Cookbook

Using WGS84 [4326] geographic, long-lat coordinates we'll actually get a measure corresponding to an angle
expressed in decimal degrees. [not so useful, really ...]
any other SRS will return a distance measure expressed in meters: anyway, as you can easily notice, figures aren't
exactly the same.
Great Circle distances are calculated assuming that the Earth is exactly a sphere: and this one obviously is the worst
estimate we can get.
on the other side Geodesic distances are directly calculated on the reference Ellipsoid.

Conclusion:: Thou shall not have exact measures

But this isn't at all surprising in physical and natural sciences: any measured value is intrinsically affected by errors and
approximations.
And any calculated value will be inexorably affected by rounding and truncation artifacts.

So absolutely exact figures simply doesn't exist in the real world: you have to be conscious that you can simply get some
more or less approximated value.
But at least, you can take care to properly reduce such approximations in the best possible way.

SpatiaLite Cookbook

Executing your first SQL queries
2011 January 28

You can follow two different approaches in order to query a DB table:

1. you can lazily use the Query Table menu item.
a. this surely is quickest and easiest way, completely user friendly.
b. you simply have to click the mouse's right button over the required table, so to make the context menu

to be shown.

SpatiaLite Cookbook

c. then you can simply use the lowermost buttons in order to scroll the result-set back and forth at your
will.

d. anyway, this approach is rather mechanical, and doesn't allow you to exploit SQL at the best of its
powerful capabilities.

2. alternatively you can hand-write any arbitrary SQL statement into the uppermost pane, then pressing the
Execute button.

a. this one is the hardest way: you are responsible for what you are doing (or even misdoing ...)
b. but this way you can take full profit of the impressive SQL unconstrained fire power.

You surely noticed in the above illustration that Geometry columns simply reports an anonymous BLOB
GEOMETRY: this is far to be satisfactory.
But you can get a much richer preview of any Geometry simply clicking the mouse's right button over the
corresponding value, then selecting the BLOB explore menu item.

SpatiaLite Cookbook

SELECT COL002 AS name,
 COL006 AS longitude,
 COL005 AS latitude,
 MakePoint (COL006, COL005, 4326) AS geom
FROM cities1000
WHERE COL009 = 'IT';

You can test how free-hand SQL works using this SQL statement: simply copy the above SQL statement, then
paste into the query pane, and finally press the Execute button.
Just a quick and fast explanation:

the cities1000 table contains any populated place in the world
there are lots of columns in this table, and their names are rather obscure
(you can find a full documentation for this at http://www.geonames.org/)
but you can simply trust to my authority just for now.
COL002 contains the name of each populated places.
COL006 contains the corresponding longitude (expressed in decimal degrees).
COL005 is the corresponding latitude
MakePoint() is a Spatial function building a point-like Geometry from corresponding coordinates.
COL009 contains the Country code
very simply said, the WHERE clause will filter the result-set so to exclude all places outside Italy.

All right, you are now supposed to be able to really start working seriously.
In the next slides we'll start exploring the mystery world of SQL and Spatial SQL.

http://www.geonames.org/

SpatiaLite Cookbook

Basics about SQL queries
2011 January 28

The following SQL queries are so elementary simple that you can directly verify the results by yourself.
Simply follow any example executing the corresponding SQL statement (using copy&paste).

SELECT *
FROM reg2001_s;

This one really is the pons asinorum of SQL: all columns for each row of the selected table will be dumped
following a random order.

SELECT pop2001, regione
FROM reg2001_s;

You aren't necessarily obliged to retrieve every column: you can explicitly choose which columns have to be
included into the result-set, establishing their relative order.

SELECT Cod_rEg AS code, REGIONE AS name,
 pop2001 AS "population (2001)"
FROM reg2001_s;

You can set a most appropriate and intelligible name for each column, if you feel this is appropriate.
this example shows two important aspects to be absolutely noticed:

SQL names are case-insensitive: REGIONE and regione refers the same column.
SQL names cannot contain forbidden characters (such as spaces, brackets, colons, hyphens and so on).
And they cannot correspond to any reserved keyword (i.e. you cannot define a column named e.g. SELECT or
FROM, because they shadow SQL commands)
anyway you can explicitly mask any forbidden name, so to make it become fully legal.
In order to apply such masking, you simply have to enclose the full name within double quotes.
you can obviously indiscriminately double quote every SQL name: this is completely harmless, but not
strictly required.
in the (extremely rare, but not impossible) case your forbidden name already contains one or more double
quote characters, you must insert an extra double quote for each one of them.
e.g.: A"Bc"D has to be correctly masked as: "A""Bc""D"

SELECT COD_REG, REGIONE, POP2001
FROM reg2001_s
ORDER BY regione;

SQL allows you to order rows into the result-set in the most convenient way for your purposes.

SELECT COD_REG, REGIONE, POP2001
FROM reg2001_s
ORDER BY POP2001 DESC;

You can order in ASCending or DESCending order at your will: the ASC qualifier is usually omitted, simply because
this one is the default ordering.

Ascending order means A-Z for text values: and from lesser to greater for numeric values.

SpatiaLite Cookbook

Descending order means Z-A for text values: and from greater to lesser for numeric values.

SELECT COD_PRO, PROVINCIA, SIGLA
FROM prov2001_s
WHERE COD_REG = 9;

Using the WHERE clause you can restrict the range: only rows satisfying the WHERE clause will be placed into the
result-set: in this case, the list of Counties belonging to Tuscany Region will be extracted.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE COD_PRO = 48;

Same as above: this time the list of Local Councils belonging to the Florence County will be extracted.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE COD_REG = 9 AND POP2001 > 50000
ORDER BY POP2001 DESC;

You can combine more conditions under the same WHERE clause: this time the list of the most populated Local
Councils (> 50,000 peoples) belonging to Tuscany Region will be extracted.
And the result-set will be ordered accordingly to decreasing population.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE nome_com = 'ROMA';

You can obviously use text strings as comparison values: in pure SQL any text string has to be enclosed within
single quotes.
[SQLite is smart enough to recognize double quoted text strings as well, but I strongly discourage you to adopt
this bad style as your preferred one].
Please note well: string values comparisons for SQLite are always case-sensitive.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE nome_com = 'L''AQUILA';

When some text string contains an apostrophe, you have to apply masking.
An extra single quote is required to mask every apostrophe withing the text string: e.g.: REGGIO NELL'EMILIA has
to be correctly masked as: 'REGGIO NELL''EMILIA'

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE nome_com LIKE 'roma';

You can use the approximate evaluation operator LIKE to make text comparisons to become case-insensitive.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE nome_com LIKE '%maria%';

And you can use the operator LIKE so to apply partial text comparison, using % as a wild-card: this query will
extract any Local Council containing the sub-string 'maria' within its name.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE nome_com IN ('ROMA', 'MILANO', 'NAPOLI');

Sometimes may be useful using a list of values, as the one shown above.

SELECT PRO_COM, NOME_COM, POP2001
FROM com2001_s
WHERE POP2001 BETWEEN 1990 AND 2010;

Another not often used, but sometimes useful comparison criterion is the one to set a range of values to be
checked.

SpatiaLite Cookbook

SELECT PROVINCIA, SIGLA, POP2001
FROM prov2001_s
WHERE COD_REG IN (9, 10, 11, 12)
 AND SIGLA NOT IN ('LI', 'PI')
 AND (POP2001 BETWEEN 300000 AND 500000
 OR POP2001 > 750000);

Using SQL you can set any kind of complex WHERE clause: there are no imposed limits.
And this one is a really fantastic feature, disclosing potentially infinite scenarios.
Just a short explanation: the previous query will:

include any County in Central Italy (Regions: Tuscany, Umbria, Marche and Lazio)
excluding the Livorno and Pisa Counties
then filtering Counties by population:

including the ones within the range 300,000 to 500,000
including as well the ones exceeding 750,000 peoples

SELECT PROVINCIA, SIGLA, POP2001
FROM prov2001_s
WHERE COD_REG IN (9, 10, 11, 12)
 AND SIGLA NOT IN ('LI', 'PI')
 AND POP2001 BETWEEN 300000 AND 500000
 OR POP2001 > 750000;

Please note well: in SQL the logical connector OR has a very low priority.
Check by yourself: omitting to properly enclose the OR-clause within brackets produces very different results, isn't
?

SELECT *
FROM com2001_s
LIMIT 10;

There is a last sometimes useful SELECT clause to explain: using LIMIT you can set the maximum number of rows
to be extracted into the result-set
(very often you aren't actually interested into reading a very densely populated table as a whole: a shorted preview
will easily be enough in many cases).

SELECT *
FROM com2001_s
LIMIT 10 OFFSET 1000;

And that's not all: SQL doesn't constraints you to read a limited row-set necessarily starting from the beginning:
you can place the start-point at your will, simply using OFFSET combined with LIMIT.

Learning SQL isn't so difficult after all.
There are very few keywords, language syntax is notably regular and predictable, and query statements are
designed to resemble plain English (as much as possible ...).
Now you are supposed to be able to attempt writing (simple) SQL query statements by yourself.

SpatiaLite Cookbook

Understanding aggregate
functions

2011 January 28

We've seen since now how SQL allows to retrieve single values on a row-per-row basis.
A different approach is supported as well, one allowing to compute total values for the whole table, or for group(s)
of selected rows.
This implies using some special functions, known as aggregate functions.

SELECT Min(POP2001), Max(POP2001),
 Avg(POP2001), Sum(POP2001), Count(*)
FROM com2001_s;

This query will return a single row, representing something like a summary for the whole table:

the Min() function will return the minimum value found into the given column
the Max() function will return the maximum value found into the given column
the Avg() function will return the average value for the given column
the Sum() function will return the total corresponding to the given column
the Count() function will return the number of rows (entities) found

SELECT COD_PRO, Min(POP2001), Max(POP2001),
 Avg(POP2001), Sum(POP2001), Count(*)
FROM com2001_s
GROUP BY COD_PRO;

You can use the GROUP BY clause in order to establish a more finely grained aggregation by sub-groups.
This query will return distinct totals for each County.

SELECT COD_REG, Min(POP2001), Max(POP2001),
 Avg(POP2001), Sum(POP2001), Count(*)
FROM com2001_s
GROUP BY COD_REG;

And you can obviously get totals for each Region simply changing the GROUP BY criterion.

SELECT DISTINCT COD_REG, COD_PRO
FROM com2001_s
ORDER BY COD_REG, COD_PRO;

There is another different way to aggregate rows: i.e. using the DISTINCT clause.
Please note well: this isn't absolutely the same as using a GROUP BY clause:

DISTINCT simply suppresses any duplicate row, but has nothing to do with aggregate functions.
GROUP BY is absolutely required each time you have to properly control aggregation.

SpatiaLite Cookbook

Your first Spatial SQL queries
2011 January 28

SpatiaLite is a Spatial DBMS, so it's now time to perform some Spatial SQL query.
There isn't absolutely nothing odd in Spatial SQL: it basically is exactly as standard SQL, but it supports the exotic
data-type Geometry.
Usually you cannot directly query a Geometry value (as we've already seen they simply are a meaningless BLOB):
you are expected to use some appropriate spatial function to access a Geometry value in a meaningful way.

SELECT COD_REG, REGIONE, ST_Area(Geometry)
FROM reg2001_s;

The ST_Area() function is one of such Spatial functions; usually you can easily recognize any Spatial function,
simply because all them are ST_ prefixed.
This one is not an absolute rule, anyway: SpatiaLite is able to understand the alias name Area() to identify the
same function.
As the name itself states, this function computes the surface of the corresponding Geometry.

SELECT COD_REG AS code,
 REGIONE AS name,
 ST_Area(Geometry) / 1000000.0 AS "Surface (sq.Km)"
FROM reg2001_s
ORDER BY 3 DESC;

As you surely noticed, the first query returned very high figures: this is because the current dataset uses meters as
length unit, and consequently surfaces are measured in m².
But we simply have to apply an appropriate scale factor to get the most usual km² units.
Please note two SQL features we are introducing for the first time:

SQL isn't constrained to directly return the column value into the result-set: you can freely define any valid
arithmetic expression as required.
Referencing a complex expression into some ORDER BY clause isn't too much practical:
but you can easily identify any column using its relative position (first column has index 1, and so on).

SELECT COD_REG AS code,
 REGIONE AS name,
 ST_Area(Geometry) / 1000000.0 AS "Surface (sq.Km)",
 POP2001 / (ST_Area(Geometry) / 1000000.0)
 AS "Density: Peoples / sq.Km"
FROM reg2001_s
ORDER BY 4 DESC;

And you can perform even more complex calculations in SQL.
This query will compute the population density (measured as peoples / km²).

All right, you have now acquired a basic SQL / Spatial SQL knowledge.
You are now ready to confront yourself with most complex and powerful queries: but this requires building a
serious database.
Do you remember ? for now we where simply using Virtual Shapefiles tables; i.e. the faint imitation of real
Spatial tables (internally stored).
So during the next steps we'll first create and populate a well designed DB (not a so trivial task), and then we'll
come again to see most complex and sophisticated SQL queries.

SpatiaLite C
ookbook

M
ore about Spatial SQ

L
: W

K
T

 and W
K

B
2011 January 28

SpatiaLite supports a G
e
o
m
e
t
r
y data type conform

ant to the international standard O
G

C
-SFS (O

pen G
eospatial C

onsortium
 - Sim

ple Feature SQ
L).

http://w
w

w
.opengeospatial.org/standards/sfs

G
e
o
m
e
t
r
y is an abstract data type w

ith seven related concrete sub-classes.
Y

ou cannot directly instantiate a G
e
o
m
e
t
r
y (because this one is and abstract class, and doesn't corresponds to any actual im

plem
entation): but you can freely instantiate

any related sub-class.

Sub-C
lass

E
xam

ple

P
O
I
N
T

L
I
N
E
S
T
R
I
N
G

http://www.opengeospatial.org/standards/sfs

SpatiaLite C
ookbook

P
O
L
Y
G
O
N

M
U
L
T
I
P
O
I
N
T

SpatiaLite C
ookbook

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G

M
U
L
T
I
P
O
L
Y
G
O
N

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N

A
ny arbitrary collection of elem

entary sub-classes.
Please note: for som

e odd reason this one seem
s to be the sub-class absolutely beloved by inexperienced beginners:

all them
 are fond of G

E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N:

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N isn't supported by the Shapefile form

at.
A

nd this sub-class isn't generally supported by ordinary G
IS sw

 (view
ers and so on).

So it's very rarely used in the real G
IS professional w

orld.

SpatiaLite C
ookbook

W
K

T
 and W

K
T

 notations

G
e
o
m
e
t
r
y is a very com

plex data type: accordingly to this, O
G

C
-SFS defines tw

o alternative standard notations allow
ing to represent G

eom
etry values:

the W
K

T
 (W

ell K
now

n Text) notation is intended to be user friendly (not really so user friendly after all, but at least hum
an readable).

the W
K

B
 (W

ell K
now

n Binary) notation on the other side is m
ore intended for precise and accurate im

port/export/exchange of G
eom

etries betw
een different

platform
s.

D
im

ension: X
Y

 (2D
) the m

ost oftenly used ...
G

eom
etry T

ype
W

K
T

 exam
ple

P
O
I
N
T

P
O
I
N
T
(
1
2
3
.
4
5

5
4
3
.
2
1
)

L
I
N
E
S
T
R
I
N
G

L
I
N
E
S
T
R
I
N
G
(
1
0
0
.
0

2
0
0
.
0
,

2
0
1
.
5

1
0
2
.
5
,

1
2
3
4
.
5
6

1
2
3
.
8
9
)

three vertices

P
O
L
Y
G
O
N

P
O
L
Y
G
O
N
(
(
1
0
1
.
2
3

1
7
1
.
8
2
,

2
0
1
.
3
2

1
0
1
.
5
,

2
1
5
.
7

2
0
1
.
9
5
3
,

1
0
1
.
2
3

1
7
1
.
8
2
)
)

exterior ring, no interior rings

P
O
L
Y
G
O
N
(
(
1
0

1
0
,

2
0

1
0
,

2
0

2
0
,

1
0

2
0
,

1
0

1
0
)
,

(
1
3

1
3
,

1
7

1
3
,

1
7

1
7
,

1
3

1
7
,

1
3

1
3
)
)

exterior ring, one interior ring

M
U
L
T
I
P
O
I
N
T

M
U
L
T
I
P
O
I
N
T
(
1
2
3
4
.
5
6

6
5
4
3
.
2
1
,

1

2
,

3

4
,

6
5
.
2
1

1
2
4
.
7
8
)

three points

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G
(
(
1

2
,

3

4
)
,

(
5

6
,

7

8
,

9

1
0
)
,

(
1
1

1
2
,

1
3

1
4
)
)

first and last linestrings have 2 vertices each one;
the second linestring has 3 vertices

M
U
L
T
I
P
O
L
Y
G
O
N

M
U
L
T
I
P
O
L
Y
G
O
N
(
(
(
0

0
,
1
0

2
0
,
3
0

4
0
,
0

0
)
,
(
1

1
,
2

2
,
3

3
,
1

1
)
)
,

(
(
1
0
0

1
0
0
,
1
1
0

1
1
0
,
1
2
0

1
2
0
,
1
0
0

1
0
0
)
)
)

tw
o polygons: the first one has an interior ring

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N
(
P
O
I
N
T
(
1

1
)
,

L
I
N
E
S
T
R
I
N
G
(
4

5
,

6

7
,

8

9
)
,

P
O
I
N
T
(
3
0

3
0
)
)

X
Y

Z
 (3D

)
G

eom
etry T

ype
W

K
T

 exam
ple

P
O
I
N
T

P
O
I
N
T
Z
(
1
3
.
2
1

4
7
.
2
1

0
.
2
1
)

L
I
N
E
S
T
R
I
N
G

L
I
N
E
S
T
R
I
N
G
Z
(
1
5
.
2
1

5
7
.
5
8

0
.
3
1
,

1
5
.
8
1

5
7
.
1
2

0
.
3
3
)

P
O
L
Y
G
O
N

...
M
U
L
T
I
P
O
I
N
T

M
U
L
T
I
P
O
I
N
T
Z
(
1
5
.
2
1

5
7
.
5
8

0
.
3
1
,

1
5
.
8
1

5
7
.
1
2

0
.
3
3
)

SpatiaLite C
ookbook

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G

...
M
U
L
T
I
P
O
L
Y
G
O
N

...

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N
Z
(
P
O
I
N
T
Z
(
1
3
.
2
1

4
7
.
2
1

0
.
2
1
)
,

L
I
N
E
S
T
R
I
N
G
Z
(
1
5
.
2
1

5
7
.
5
8

0
.
3
1
,

1
5
.
8
1

5
7
.
1
2

0
.
3
3
)
)

D
im

ension: X
Y

M
 (2D

 + M
easure)

Please note: this one has nothing to do w
ith 3D

.
M

 is a m
easure value, not a geom

etry dim
ension.

G
eom

etry T
ype

W
K

T
 exam

ple
P
O
I
N
T

P
O
I
N
T
M
(
1
3
.
2
1

4
7
.
2
1

1
0
0
0
.
0
)

L
I
N
E
S
T
R
I
N
G

L
I
N
E
S
T
R
I
N
G
M
(
1
5
.
2
1

5
7
.
5
8

1
0
0
0
.
0
,

1
5
.
8
1

5
7
.
1
2

1
1
0
0
.
0
)

P
O
L
Y
G
O
N

...
M
U
L
T
I
P
O
I
N
T

M
U
L
T
I
P
O
I
N
T
M
(
1
5
.
2
1

5
7
.
5
8

1
0
0
0
.
0
,

1
5
.
8
1

5
7
.
1
2

1
1
0
0
.
0
)

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G

...
M
U
L
T
I
P
O
L
Y
G
O
N

...

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N
M
(
P
O
I
N
T
M
(
1
3
.
2
1

4
7
.
2
1

1
0
0
0
.
0
)
,

L
I
N
E
S
T
R
I
N
G
M
(
1
5
.
2
1

5
7
.
5
8

1
0
0
0
.
0
,

1
5
.
8
1

5
7
.
1
2

1
1
0
0
.
0
)
)

X
Y

Z
M

 (3D
 + M

easure)
Please note: M

 is a m
easure value, not a geom

etry dim
ension.

G
eom

etry T
ype

W
K

T
 exam

ple
P
O
I
N
T

P
O
I
N
T
Z
M
(
1
3
.
2
1

4
7
.
2
1

0
.
2
1

1
0
0
0
.
0
)

L
I
N
E
S
T
R
I
N
G

L
I
N
E
S
T
R
I
N
G
Z
M
(
1
5
.
2
1

5
7
.
5
8

0
.
3
1

1
0
0
0
.
0
,

1
5
.
8
1

5
7
.
1
2

0
.
3
3

1
1
0
0
.
0
)

P
O
L
Y
G
O
N

...
M
U
L
T
I
P
O
I
N
T

M
U
L
T
I
P
O
I
N
T
Z
M
(
1
5
.
2
1

5
7
.
5
8

0
.
3
1

1
0
0
0
.
0
,

1
5
.
8
1

5
7
.
1
2

0
.
3
3

1
1
0
0
.
0
)

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G

...
M
U
L
T
I
P
O
L
Y
G
O
N

...

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N

G
E
O
M
E
T
R
Y
C
O
L
L
E
C
T
I
O
N
Z
M
(
P
O
I
N
T
Z
M
(
1
3
.
2
1

4
7
.
2
1

0
.
2
1

1
0
0
0
.
0
)
,

L
I
N
E
S
T
R
I
N
G
Z
M
(
1
5
.
2
1

5
7
.
5
8

0
.
3
1

1
0
0
0
.
0
,

1
5
.
8
1

5
7
.
1
2

0
.
3
3

1
1
0
0
.
0
)
)

There are several Spatial SQ
L

 functions supporting W
K
T and W

K
B handling;

exam
ining all them

 one by one w
ill surely be absolutely boring (and not really useful for the average user).

So w
e'll briefly explore just the m

ain (and m
ost often used) ones.

SpatiaLite C
ookbook

S
E
L
E
C
T

H
e
x
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
)
)
;

0
0
0
1
F
F
F
F
F
F
F
F
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
7
C
0
1
0
0
0
0
0
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
F
E

S
E
L
E
C
T

S
T
_
A
s
T
e
x
t
(
x
'
0
0
0
1
F
F
F
F
F
F
F
F
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
7
C
0
1
0
0
0
0
0
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
F
E
'
)
;

P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)

S
E
L
E
C
T

H
e
x
(
S
T
_
A
s
B
i
n
a
r
y
(
x
'
0
0
0
1
F
F
F
F
F
F
F
F
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
7
C
0
1
0
0
0
0
0
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
F
E
'
)
)
;

0
1
0
1
0
0
0
0
0
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0

S
E
L
E
C
T

H
e
x
(
S
T
_
A
s
B
i
n
a
r
y
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
)
)
)
;

0
1
0
1
0
0
0
0
0
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0

S
E
L
E
C
T

S
T
_
A
s
T
e
x
t
(
S
T
_
G
e
o
m
F
r
o
m
W
K
B
(
x
'
0
1
0
1
0
0
0
0
0
0
8
D
9
7
6
E
1
2
8
3
C
0
F
3
3
F
1
6
F
B
C
B
E
E
C
9
C
3
0
2
4
0
'
)
)
;

P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)

Please note w
ell: both W

K
T

 and W
K

B
 notations are intended to support standard data exchange (im

port/export);
anyw

ay the actual form
at internally used by SpatiaLite is a different one, i.e. B

L
O

B
 G

eom
etry.

Y
ou m

ust never be concerned about such internal form
at:

you sim
ply have to use the appropriate conversion functions so to convert back and forth in standard W

K
T or W

K
B.

the H
e
x
(
) function is a standard SQ

L
 function allow

ing to represent binary values as hexadecim
al encoded text strings.

the Spatial SQ
L

 function S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
) converts any valid W

K
T expression into an internal B

L
O
B

G
e
o
m
e
t
r
y value.

S
T
_
G
e
o
m
F
r
o
m
W
K
B
(
) converts any valid W

K
B expression into an internal B

L
O
B

G
e
o
m
e
t
r
y value.

S
T
_
A
s
T
e
x
t
(
) converts an internal B

L
O
B

G
e
o
m
e
t
r
y value into the corresponding W

K
T expression.

S
T
_
A
s
B
i
n
a
r
y
(
) converts an internal B

L
O
B

G
e
o
m
e
t
r
y value into the corresponding W

K
B expression.

S
E
L
E
C
T

S
T
_
G
e
o
m
e
t
r
y
T
y
p
e
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
)
)
;

P
O
I
N
T

S
E
L
E
C
T

S
T
_
G
e
o
m
e
t
r
y
T
y
p
e
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
Z
(
1
.
2
3
4
5

2
.
3
4
5
6

1
0
)
'
)
)
;

P
O
I
N
T

Z

S
E
L
E
C
T

S
T
_
G
e
o
m
e
t
r
y
T
y
p
e
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T

Z
M
(
1
.
2
3
4
5

2
.
3
4
5
6

1
0

2
0
)
'
)
)
;

SpatiaLite C
ookbook
P
O
I
N
T

Z
M

S
T
_
G
e
o
m
e
t
r
y
T
y
p
e
(
) w

ill return the G
eom

etry Type from
 the given internal B

L
O
B

G
e
o
m
e
t
r
y value.

Please note: w
hen using not-2D

 dim
ensions, declaring e.g. 'P

O
I
N
T
Z' or 'P

O
I
N
T

Z' is absolutely the sam

e: SpatiaLite understands both notations indifferently.

S
E
L
E
C
T

S
T
_
S
r
i
d
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
)
)
;

-
1

S
E
L
E
C
T

S
T
_
S
r
i
d
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
,

4
3
2
6
)
)
;

4
3
2
6

S
T
_
S
r
i
d
(
) w

ill return the SR
ID

 from
 the given internal B

L
O
B

G
e
o
m
e
t
r
y
> value.

Please note: both S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
) and S

T
_
G
e
o
m
F
r
o
m
W
K
B
(
) accept an optional S

R
I
D argum

ent.
If the S

R
I
D is unspecified (not at all a good practice), then -

1 is assum
ed.

C
om

m
on pitfalls

"I've declared a M
U
L
T
I
P
O
I
N
T-type G

eom
etry colum

n;
now

 I absolutely have to insert a sim
ple P

O
I
N
T into this table,

but I get a constraint failed error ..."

A
ny M

U
L
T
I
x
x
x
x
x type can store a single elem

entary item
: you sim

ply have to use the appropriate W
K
T syntax.

A
nd anyw

ay several useful type casting functions exist.

S
E
L
E
C
T

S
T
_
G
e
o
m
e
t
r
y
T
y
p
e
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
M
U
L
T
I
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
)
)
;

M
U
L
T
I
P
O
I
N
T

S
E
L
E
C
T

S
T
_
A
s
T
e
x
t
(
C
a
s
t
T
o
M
u
l
t
i
L
i
n
e
S
t
r
i
n
g
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
L
I
N
E
S
T
R
I
N
G
(
1
.
2
3
4
5

2
.
3
4
5
6
,

1
2
.
3
4
5
6

2
3
.
4
5
6
7
)
'
)
)
)
;

M
U
L
T
I
L
I
N
E
S
T
R
I
N
G
(
(
1
.
2
3
4
5

2
.
3
4
5
6
,

1
2
.
3
4
5
6

2
3
.
4
5
6
7
)
)

S
E
L
E
C
T

S
T
_
A
s
T
e
x
t
(
C
a
s
t
T
o
X
Y
Z
M
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)
'
)
)
)
;

P
O
I
N
T

Z
M
(
1
.
2
3
4
5

2
.
3
4
5
6

0

0
)

S
E
L
E
C
T

S
T
_
A
s
T
e
x
t
(
C
a
s
t
T
o
X
Y
(
S
T
_
G
e
o
m
F
r
o
m
T
e
x
t
(
'
P
O
I
N
T

Z
M
(
1
.
2
3
4
5

2
.
3
4
5
6

1
0

2
0
)
'
)
)
)
;

P
O
I
N
T
(
1
.
2
3
4
5

2
.
3
4
5
6
)

SpatiaLite Cookbook

Spatial MetaData Tables
2011 January 28

SpatiaLite requires several metadata tables in order to work properly.
There is absolutely nothing strange in such tables; they simply are tables as any other one.
They are collectively as metadata because they are collectively intended to support an extended and complete
qualification of Geometries.

Quite any Spatial SQL function strongly relies on such tables: so they are absolutely required for internal
management purposes.
Any attempt to hack someway such tables will quite surely result in a severely corrupted (and malfunctioning)
database.

There is a unique safe way to interact with metadata tables, i.e. using as far as possible the appropriate Spatial
SQL functions.
Directly performing INSERT, UPDATE or DELETE on their behalf is a completely unsafe and strongly discouraged
practice.

SELECT InitSpatialMetaData();

The InitSpatialMetaData() function must be called immediately after creating a new database, and before
attempting to call any other Spatial SQL function:

the scope of this function is exactly the one to create (and populate) any metadata table internally required
by SpatiaLite.
if any metadata table already exist, this function doesn't apply any action at all:
so, calling more times InitSpatialMetaData() is useless but completely harmless.
please note: spatialite_gui will automatically perform any required initialization task every time a new
database is created:
so (using this tool) there is no need at all to explicitly call this function.

SELECT *
FROM spatial_ref_sys;

srid auth_name auth_srid ref_sys_name proj4text srs_wkt

Anguilla 1957 / +proj=tmerc +lat_0=0 +lon_0=-62

PROJCS["Anguilla 1957 / British West
Indies Grid",
GEOGCS["Anguilla 1957",
DATUM["Anguilla_1957",
SPHEROID["Clarke 1880
(RGS)",6378249.145,293.465,
AUTHORITY["EPSG","7012"]],
AUTHORITY["EPSG","6600"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,

SpatiaLite Cookbook

2000 epsg 2000 British West
Indies Grid

+k=0.9995000000000001 +x_0=400000
+y_0=0 +ellps=clrk80 +units=m +no_defs

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4600"]],
UNIT["metre",1,
AUTHORITY["EPSG","9001"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-62],
PARAMETER["scale_factor",0.9995],
PARAMETER["false_easting",400000],
PARAMETER["false_northing",0],
AUTHORITY["EPSG","2000"],
AXIS["Easting",EAST],
AXIS["Northing",NORTH]]

...

The spatial_ref_sys table does actually contains the whole EPSG dataset (Spatial Reference System
definitions).

the SRID column is the PRIMARY KEY uniquely identifying each item.
the auth_name<, auth_srid and ref_sys_name columns usually contains a reference to the original EPSG
definition (mainly for documentation purposes).
the proj4text column contains geodesic parameters required by the PROJ.4 library.

these parameters are absolutely required by the Transform() function, because any coordinate re-
projection will be actually performed invoking the appropriate PROJ.4 functions.

the srs_wkt column contains a complete definition of the corresponding SRS using the (obnoxiously
verbose) WKT format.

SpatiaLite itself doesn't requires this information to be present: but if this WKT string is available, then a
.PRJ file will be created when exporting any Shapefile
(many GIS packages require a .PRJ file to be present for each Shapefile).
please, don't be confused: this WKT for SRS has nothing to do with the better known WKT used to
represent geometries.

important notice: altering the original EPSG definitions is unsafe and strongly discouraged, and must be
absolutely avoided.
Anyway you are absolutely free to insert further custom definitions by your own:
in this case using SRID values > 32768 is strongly suggested.

SELECT *
FROM geometry_columns;

f_table_name f_geometry_column type coord_dimension srid spatial_index_enabled

local_councils geometry MULTIPOLYGON XY 23032 1

populated_places geometry POINT XY 4326 1

The geometry_columns table supports each Geometry column defined into the database:

any column not supported by a corresponding entry within this table, for sure cannot be considered as a
genuine Geometry.
important notice: any attempt to hack this table by directly performing INSERT, UPDATE or DELETE will quite
surely end into a major disaster
(i.e. a corrupted and malfunctioning database).
Use the appropriate SQL functions instead: AddGeometryColumn(), RecoverGeometryColumn() and so on.

http://trac.osgeo.org/proj/

SpatiaLite Cookbook

and the virts_geometry_columns is intended to support Virtual Shapefiles.

The geometry_columns table is intended to support ordinary tables.
Anyway two further similar tables exist as well:

the views_geometry_columns is intended to support Geometry VIEWs.

SpatiaLite Cookbook

Viewing SpatiaLite layers in QGIS
2011 January 28

QGIS is a really popular and widespread desktop GIS app: you can download the latest QGIS from:
http://www.qgis.org/
QGIS contains an internal data provider supporting SpatiaLite:
so interacting with any SpatiaLite's DB using a classic desktop GIS is simple and easy.

You simply have to connect the SpatiaLite's DB, then choosing the layer(s) you intend to use.
Please note: accordingly to DBMS terminology you are accustomed to handle tables.
But in the GIS own jargon the term layers is very often used to identify exactly the same thing.

http://www.qgis.org/

SpatiaLite Cookbook

Once you've connected your layers from the SpatiaLite DB you can immediately start using QGIS own tools.
And that's all.

SpatiaLite Cookbook

Recipe #1:
Creating a well designed DB

2011 January 28

Normal Form

Any well designed DB adheres to the relational paradigm, and implements the so-called Normal Form.
Very simply explained in plain words:

you'll first attempt to identify any distinct category (aka class) present into your dataset
and simultaneously you have to identify any possible relation connecting categories.
data redundancy is strongly discouraged, and has to be reduced whenever is possible.

Consider the ISTAT Census 2001; identifying categories and relations is absolutely simple:

At the lowermost hierarchy level we have obviously Local Councils.
Each Local Council surely belongs to some County: so a relation exists connecting Local Councils and
Counties.
To be more descriptive, this one is a typical one-to-many relationship
(one single County / many Local Councils: placing the same Local Council on two different Counties is
absolutely forbidden).
The same is true for Counties and Regions.
There is not real need to establish a relation between Local Councils and Regions, because we can get this
relation using the County as an intermediate pivot.

SpatiaLite Cookbook

Accordingly to this, it's quite easy to identify several flaws in the original Shapefile's layout:

1. a POP2001 value is present for Local Councils, Counties and Regions:
well, this one clearly is an unneeded redundancy.
We simply have to preserve this information at the lowermost level (Local Councils):
because we can then compute anyway an aggregate value for Counties (or Regions).

2. a second redundancy exists: there is no real need compelling us to store both County and Region codes for
each Local Council.
Preserving the County code is just enough, because we can get a reference to the corresponding Region
anyway simply referencing the County.

3. a Geometry representation is stored for each County and Region:
this too represents an unneeded redundancy, because we can get such Geometries simply aggregating the
ones stored at the Local Council level.

Then we have the cities1000 dataset: which comes from a completely different source (so there is no useful key
we can use to establish relations to other entities).
And this dataset is in the 4326 SRID (WGS84), whilst any ISTAT - Census 2001 dataset is in the 23032 SRID
[ED50 UTM zone 32];
so for now will simply keep this dataset in a completely self-standing state.
We'll see later how we can actually integrate this dataset with the other ones: after all, all them represent Italy,
isn't ?
For sure some geographic relationship must exist ...

CREATE TABLE regions (
 region_id INTEGER NOT NULL PRIMARY KEY,
 region_name TEXT NOT NULL);

Step 1a) we'll start creating the regions table (i.e. the one positioned at the topmost hierarchic level).
Please note: we have defined a PRIMARY KEY, i.e. a unique (not duplicable), absolutely unambiguous identifier for
each Region.

INSERT INTO regions (region_id, region_name)
SELECT COD_REG, REGIONE

SpatiaLite Cookbook

FROM reg2001_s;

Step 1b) then we'll populate the regions table.
Using the INSERT INTO ... SELECT ... is more or less like performing a copy:
rows are extracted from the input table and immediately inserted into the output table.
As you can see, corresponding columns are explicitly identified by order.

CREATE TABLE counties (
 county_id INTEGER NOT NULL PRIMARY KEY,
 county_name TEXT NOT NULL,
 car_plate_code TEXT NOT NULL,
 region_id INTEGER NOT NULL,
 CONSTRAINT fk_county_region
 FOREIGN KEY (region_id)
 REFERENCES regions (region_id));

INSERT INTO counties (county_id, county_name,
 car_plate_code, region_id)
SELECT cod_pro, provincia, sigla, cod_reg
FROM prov2001_s;

Step 2a) we'll now create (and populate) the counties table.
Please note: a relation exists linking counties and regions.
Defining an appropriate FOREIGN KEY we'll make such relation to be explicitly set once for all.

CREATE INDEX idx_county_region
 ON counties (region_id);

Step 2b) accordingly to performance considerations, we must also create an INDEX corresponding to each FOREIGN
KEY we'll define.

Very shortly explained: a PRIMARY KEY isn't simply a logical constraint.
In SQLite defining a PRIMARY KEY automatically implies generating an implicit index supporting fast direct access
to each single row.
But on the other side defining a FOREIGN KEY simply establishes a logical constraint:
so if you actually wish to support fast direct access to each single row you have to explicitly create the
corresponding index.

CREATE TABLE local_councils (
 lc_id INTEGER NOT NULL PRIMARY KEY,
 lc_name TEXT NOT NULL,
 population INTEGER NOT NULL,
 county_id INTEGER NOT NULL,
 CONSTRAINT fk_lc_county
 FOREIGN KEY (county_id)
 REFERENCES counties (county_id));

CREATE INDEX idx_lc_county
ON local_councils (county_id);

Step 3a) we'll now create the local_councils table.
A relation exists linking local_councils and counties.
So in this case too we have to define a FOREIGN KEY , then creating the corresponding index.
Please note: we haven't defined any Geometry column, although one is required for local_councils;
this is not a mistake, this is absolutely intentional.

SELECT AddGeometryColumn(
 'local_councils', 'geometry',
 23032, 'MULTIPOLYGON', 'XY');

Step 3b) creating a Geometry column isn't the same as creating any other ordinary column.
We have to use the AddGeometryColumn() spatial function, specifying:

1. the table name

SpatiaLite Cookbook

2. the geometry column name
3. the SRID to be used
4. the expected geometry class
5. the dimension model

(in this case, simple 2D)

INSERT INTO local_councils (lc_id,
 lc_name, population, county_id, geometry)
SELECT PRO_COM, NOME_COM, POP2001,
 COD_PRO, Geometry
FROM com2001_s;

Step 3c) after all this can populate the local_councils table as usual.

CREATE TABLE populated_places (
 id INTEGER NOT NULL
 PRIMARY KEY AUTOINCREMENT,
 name TEXT NOT NULL);

SELECT AddGeometryColumn(
 'populated_places', 'geometry',
 4326, 'POINT', 'XY');

INSERT INTO populated_places (id,
 name, geometry)
SELECT NULL, COL002,
 MakePoint(COL006, COL005, 4326)
FROM cities1000
WHERE COL009 = 'IT';

Step 4) you have now to perform the last step: creating (and populating) the populated_places table.
Several interesting points to be noted:

we have used an AUTOINCREMENT clause for the PRIMARY KEY
this practically means that SQLite can automatically generate an appropriate unique value for this PRIMARY
KEY, when no explicit value has been already set.
accordingly to this, in the INSERT INTO statement a NULL value was set for the PRIMARY KEY:
and this explicitly solicited SQLite to assign automatic values.
the original cities1000 dataset shipped two numeric columns for longitude [COL006] and latitude
[COL005]:
so we have to use the MakePoint() Spatial function in order to build a point-like Geometry.
using the SRID 4326 we set such Geometry into the WGS84 [Geographic System] SRS.

Just to recapitulate:

You started this tutorial using Virtual Shapefiles (and Virtual CSV/TXT) tables.
Such Virtual Tables aren't at all real DB tables: they aren't internally stored.
They simply are trivial external files accessed using an appropriate driver.
Using Virtual Tables at first allowed you to test some simple and very basic SQL queries.
But in order to test more complex SQL features any dataset have to be properly imported into the DBMS
itself.
And this step required creating (and then populating) internal tables, accordingly to a well designed layout.

DROP TABLE com2001_s;
DROP TABLE prov2001_s;
DROP TABLE reg2001_s;
DROP TABLE cities1000;

Step 5) and finally you can drop any Virtual Table, because they aren't any longer useful.
Please note: dropping a Virtual Shapefile or Virtual CSV/TXT doesn't removes the corresponding external data-

source, but simply removes the connection with the current database.

SpatiaLite Cookbook

Recipe #2:
Your first JOIN queries

2011 January 28

You already know the basic foundations about simple SQL queries.
Any previous example encountered since now simply queried a single table:
anyway SQL has no imposed limits, so you can query an arbitrary number of tables at the same time.
But in order to do this you must understand how to correctly handle a JOIN.

SELECT *
FROM counties, regions;

county_id county_name car_plate_code region_id region_id region_name

1 TORINO TO 1 1 PIEMONTE

1 TORINO TO 1 2 VALLE D'AOSTA

1 TORINO TO 1 3 LOMBARDIA

1 TORINO TO 1 4 TRENTINO-ALTO ADIGE

1 TORINO TO 1 5 VENETO

...

Apparently this query immediately works;
but once you get a quick glance at the result-set you'll immediately discover something really puzzling:

an unexpected huge number of rows has been returned.
and each single County seems to be related with any possible Region.

Every time SQL queries two different tables at the same time, the Cartesian Product of both datasets is
calculated.
i.e. each row coming from the first dataset is JOINed with any possible row coming from the second dataset.
This one is a blind combinatorial process, so it very difficultly can produce useful results.
And this process can easily generate a really huge result-set: this must absolutely be avoided, because:

a very long (very, very long) time may be required to complete the operation.
you can easily exhaust operating system resources before completion.

All this said, it's quite obvious that some appropriate JOIN condition has to be set in order to maintain under
control the Cartesian Product, so to actually return only meaningful rows.

SELECT *
FROM counties, regions
WHERE counties.region_id = regions.region_id;

This query is exactly the same of the previous one: but this time we introduced an appropriate JOIN condition.
Some points to be noted:

SpatiaLite Cookbook

using two (or more) tables can easily lead to name ambiguity:
e.g. in this case we have two different columns named region_id, one in the counties table, the other in the
regions table.
we must use fully qualified names to avoid any possible ambiguity:
e.g. counties.region_id identifies the region_id column belonging to the counties table, in an absolutely
unambiguous way.
defining the WHERE counties.region_id = regions.region_id clause we impose an appropriate JOIN
condition.
After this the Cartesian Product will be accordingly filtered, so to insert into the result-set only the rows
actually satisfying the imposed condition, ignoring any other.

SELECT c.county_id AS county_id,
 c.county_name AS county_name,
 c.car_plate_code AS car_plate_code,
 r.region_id AS region_id,
 r.region_name AS region_name
FROM counties AS c,
 regions AS r
WHERE c.region_id = r.region_id;

county_id county_name car_plate_code region_id region_name

1 TORINO TO 1 PIEMONTE

2 VERCELLI VC 1 PIEMONTE

3 NOVARA NO 1 PIEMONTE

4 CUNEO CN 1 PIEMONTE

5 ASTI AT 1 PIEMONTE

6 ALESSANDRIA AL 1 PIEMONTE

...

And this one always is the same as above, simply written adopting a most polite syntax:

using extensively the AS clause so to define alias names for both columns and tables make JOIN queries to be
much more concise and readable, and easiest to understand.

SELECT lc.lc_id AS lc_id,
 lc.lc_name AS lc_name,
 lc.population AS population,
 c.county_id AS county_id,
 c.county_name AS county_name,
 c.car_plate_code AS car_plate_code,
 r.region_id AS region_id,
 r.region_name AS region_name
FROM local_councils AS lc,
 counties AS c,
 regions AS r
WHERE lc.county_id = c.county_id
 AND c.region_id = r.region_id;

lc_id lc_name population county_id county_name car_plate_code region_id region_name

1001 AGLIE' 2574 1 TORINO TO 1 PIEMONTE

1002 AIRASCA 3554 1 TORINO TO 1 PIEMONTE

1003 ALA DI STURA 479 1 TORINO TO 1 PIEMONTE

...

Joining three (or even more) tables isn't much more difficult:

SpatiaLite Cookbook

you simply have to apply any required JOIN condition as appropriate.

Performance considerations

Executing complex queries involving many different tables may easily run in a very slow and sluggish mode.
This will most easily noticed when such tables contain a huge number of rows.
Explaining all this isn't at all difficult: in order to calculate the Cartesian Product the SQL engine has to access
many and many times each table involved in the query.

The basic behavior is the one to perform a full table scan each time: and obviously scanning a long table many
and many times requires a long time.
So the main key-point in order optimize your queries is the one to avoid using full table scans as much as
possible.
All this is fully supported, and it's easy to be implemented.

Each time the SQL-planner (an internal component of the SQL-engine) detects that an appropriate INDEX is
available, there is no need at all to perform full table scans, because each single row can now be immediately
accessed using this Index.
And this one will obviously be a much faster process.
Any column (or group of columns) frequently used in JOIN clauses is a good candidate for a corresponding
INDEX.
Anyway, creating an Index implies several negative consequences:

the storage allocation required by the DB-file will increase (sometimes will dramatically increase).
performing INSERT, UPDATE and/or DELETE ops will require a longer time, because the Index has to be
accordingly updated.
And this obviously imposes a further overhead.

So (not surprisingly) it's a trade-off process: you must evaluate carefully when an INDEX is absolutely required,
and attempt to reach a well balanced mix.
i.e a compromise between contrasting requirements, under various conditions and in different users-cases.
In other words there is no absolute rule: you must find your optimal case-by-case solution performing several
practical tests, until you get the optimal solution fulfilling your requirements.

SpatiaLite Cookbook

Recipe #3:
More about JOIN

2011 January 28

SQL supports another alternative syntax to represent JOIN ops.
More or less both implementations are strictly equivalent, so using the one or the other simply is matter of
personal taster in the majority of cases.
Anyway, this second method supports some really interesting further feature that is otherwise unavailable.

SELECT lc.lc_id AS lc_id,
 lc.lc_name AS lc_name,
 lc.population AS population,
 c.county_id AS county_id,
 c.county_name AS county_name,
 c.car_plate_code AS car_plate_code,
 r.region_id AS region_id,
 r.region_name AS region_name
FROM local_councils AS lc,
 counties AS c,
 regions AS r
WHERE lc.county_id = c.county_id
 AND c.region_id = r.region_id;

You now feel a strong deja vu sensation: and that's more than appropriate, because you have already encountered
this query in the previous example.

SELECT lc.lc_id AS lc_id,
 lc.lc_name AS lc_name,
 lc.population AS population,
 c.county_id AS county_id,
 c.county_name AS county_name,
 c.car_plate_code AS car_plate_code,
 r.region_id AS region_id,
 r.region_name AS region_name
FROM local_councils AS lc
JOIN counties AS c ON (
 lc.county_id = c.county_id)
JOIN regions AS r ON (
 c.region_id = r.region_id);

All right, this one is the same identical query rewritten accordingly to alternative syntax rules:

using the JOIN ... ON (...) clause makes more explicit what's going on.
and JOIN conditions are now directly expressed within the ON (...) term:
this way the query statement is better structured and more readable.
anyway, all this simply is syntactic sugar:
there is no difference at all between the above two queries in functional terms.

SELECT r.region_name AS region,
 c.county_name AS county,
 lc.lc_name AS local_council,
 lc.population AS population
FROM regions AS r
JOIN counties AS c ON (

SpatiaLite Cookbook

 c.region_id = r.region_id)
JOIN local_councils AS lc ON (
 c.county_id = lc.county_id
 AND lc.population > 100000)
ORDER BY r.region_name,
 county_name;

region county local_council population

ABRUZZO PESCARA PESCARA 116286

CALABRIA REGGIO DI CALABRIA REGGIO DI CALABRIA 180353

CAMPANIA NAPOLI NAPOLI 1004500

CAMPANIA SALERNO SALERNO 138188

EMILIA-ROMAGNA BOLOGNA BOLOGNA 371217

...

There is nothing strange or new in this query:

we simply introduced a further ON (... AND lc.population < 100000) clause, so to exclude any small
populated Local Council.

SELECT r.region_name AS region,
 c.county_name AS county,
 lc.lc_name AS local_council,
 lc.population AS population
FROM regions AS r
JOIN counties AS c ON (
 c.region_id = r.region_id)
LEFT JOIN local_councils AS lc ON (
 c.county_id = lc.county_id
 AND lc.population > 100000)
ORDER BY r.region_name,
 county_name;

region county local_council population

ABRUZZO CHIETI NULL NULL

ABRUZZO L'AQUILA NULL NULL

ABRUZZO PESCARA PESCARA 116286

ABRUZZO TERAMO NULL NULL

BASILICATA MATERA NULL NULL

BASILICATA POTENZA NULL NULL

...

Apparently this query is the same as the latest one.
But a remarkable difference exists:

this time we've used a LEFT JOIN clause:
and the result-set now looks very different from the previous one.
a plain JOIN clause will include into the result-set only rows for which both the left-sided and the right-sided
terms has been positively resolved.
but the most sophisticated LEFT JOIN clause will include into the result-set any row having an unresolved
right-sided term:
and in this case any right-sided member assumes a NULL value.

There is a striking difference between a plain JOIN and a LEFT JOIN.
Coming back to previous example, using a LEFT JOIN clause ensures that any Region and any County will now
be inserted into the result-set, even the ones failing to satisfy the imposed population limit for Local Councils.

SpatiaLite Cookbook

Recipe #4:
About VIEW

2011 January 28

SQL supports a really useful feature, the so called VIEW.
Very shortly explained, a VIEW is something falling half-way between a TABLE and a query:

a VIEW is a persistent objects (exactly as TABLEs are).
you can query a VIEW exactly in the same way you can query a TABLE:
there is no difference at all distinguishing a VIEW and a TABLE from the SELECT own perspective.
but after all a VIEW simply is like a kind of glorified query.
A VIEW has absolutely no data by itself.
Data apparently belonging to some VIEW are simply retrieved from some other TABLE each time they are
actually required.
in the SQLite's own implementation any VIEW strictly is a read-only object:
you can freely reference any VIEW in SELECT statements.
But attempting to perform an INSERT, UPDATE or DELETE statement on behalf of a VIEW isn't allowed.

Anyway, performing some practical exercise surely is the best way to introduce Views.

CREATE VIEW view_lc AS
SELECT lc.lc_id AS lc_id,
 lc.lc_name AS lc_name,
 lc.population AS population,
 c.county_id AS county_id,
 c.county_name AS county_name,
 c.car_plate_code AS car_plate_code,
 r.region_id AS region_id,
 r.region_name AS region_name,
 lc.geometry AS geometry
FROM local_councils AS lc
JOIN counties AS c ON (
 lc.county_id = c.county_id)
JOIN regions AS r ON (
 c.region_id = r.region_id);

Et voila, here is your first VIEW:

basically, this looks exactly as any query you've already seen since now.
except in this; this time the first line is: CREATE VIEW ... AS
and this one is unique syntactical difference transforming a plain query into a VIEW definition.

SELECT lc_name, population, county_name
FROM view_lc
WHERE region_name = 'LAZIO'
ORDER BY lc_name;

lc_name population county_name

ACCUMOLI 724 RIETI

ACQUAFONDATA 316 FROSINONE

SpatiaLite Cookbook

ACQUAPENDENTE 5788 VITERBO

ACUTO 1857 FROSINONE

AFFILE 1644 ROMA

...

You can actually query this VIEW.

SELECT region_name,
 Sum(population) AS population,
 (Sum(ST_Area(geometry)) / 1000000.0)
 AS "area (sq.Km)",
 (Sum(population) /
 (Sum(ST_Area(geometry)) / 1000000.0))
 AS "popDensity (peoples/sq.Km)"
FROM view_lc
GROUP BY region_id
ORDER BY 4;

region_name population area (sq.Km) popDensity (peoples/sq.Km)

VALLE D'AOSTA 119548 3258.405868 36.689107

BASILICATA 597768 10070.896921 59.355984

...

MARCHE 1470581 9729.862860 151.140979

TOSCANA 3497806 22956.355019 152.367656

...

LOMBARDIA 9032554 23866,529331 378.461144

CAMPANIA 5701931 13666.322146 417.224981

You can really perform any arbitrary complex query using a VIEW.

SELECT v.lc_name AS LocalCouncil,
 v.county_name AS County,
 v.region_name AS Region
FROM view_lc AS v
JOIN local_councils AS lc ON (
 lc.lc_name = 'NORCIA'
 AND ST_Touches(v.geometry, lc.geometry))
ORDER BY v.lc_name, v.county_name, v.region_name;

LocalCouncil County Region

ACCUMOLI RIETI LAZIO

ARQUATA DEL TRONTO ASCOLI PICENO MARCHE

CASCIA PERUGIA UMBRIA

CASTELSANTANGELO SUL NERA MACERATA MARCHE

CERRETO DI SPOLETO PERUGIA UMBRIA

CITTAREALE RIETI LAZIO

MONTEMONACO ASCOLI PICENO MARCHE

PRECI PERUGIA UMBRIA

You can JOIN a VIEW and a TABLE (or two VIEWs, and so on ...)
Just a simple explanation: this JOIN actually is one based on Spatial relationships:
the result-set represents the list of Local Councils sharing a common boundary with the Norcia one.
You can get a much more complete example here (Haute cuisine recipes).

SpatiaLite Cookbook

VIEW is one of the many powerful and wonderful features supported by SQL.
And SQLite's own implementation for VIEW surely is a first class one.
You should use VIEW as often as you can: and you'll soon discover that following this way handling really
complex DB layouts will become a piece of cake.

Please note: querying a VIEW can actually be as fast and efficient as querying a TABLE.
But a VIEW cannot anyway be more efficient than the underlying query is; any poorly designed and badly
optimized query surely will translate into a very slow VIEW.

SpatiaLite Cookbook

Recipe #5:
Creating a new table (and related

paraphernalia)
2011 January
28

You are now well conscious that SQL overall performance and efficiency strongly depend on the underlying
database layout, i.e. the following design choices are critical:

defining tables (and columns) in the most appropriate way.
identifying relations connection different tables.
supporting often-used relations with an appropriate index.
identifying useful constraints, so to preserve data consistency and correctness as much as possible.

It's now time to examine in deeper detail such topics.

Pedantic note: in DBMS/SQL own jargon all this is collectively defined as DDL [Data Definition Language], and is
intended as opposed to DML [Data Manipulation Language], i.e. SELECT, INSERT and so on.

CREATE TABLE peoples (
 first_name TEXT,
 last_name TEXT,
 age INTEGER,
 gender TEXT,
 phone TEXT);

This statement will create a very simple table named peoples:

each individual column definition must at least specify the corresponding data-type, such as TEXT or
INTEGER
please note: data-type handling in SQLite strongly differs from others DMBS implementations:
but we'll see this in more detail later.

CREATE TABLE peoples2 (
 id INTEGER NOT NULL
 PRIMARY KEY AUTOINCREMENT,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 age INTEGER
 CONSTRAINT age_verify
 CHECK (age BETWEEN 18 AND 90),
 gender TEXT
 CONSTRAINT gender_verify
 CHECK (gender IN ('M', 'F')),
 phone TEXT);

This one is more sophisticated version of the same table:

we have added an id column, declared as PRIMARY KEY AUTOINCREMENT
inserting a PRIMARY KEY on each table always is a very good idea.
declaring an AUTOINCREMENT clause we'll request SQLite to automatically generate unique values for

SpatiaLite Cookbook

this key.
we have added a NOT NULL clause for first_name and last_name columns.

this will declare a first kind of constraint: NULL values will be rejected for these columns.
in other words, first_name and last_name absolutely have to contain some explicitly set value.

we have added a CONSTRAINT ... CHECK (...) for age and gender columns.
this will declare a second kind of constraint: values failing to satisfy the CHECK (...) criterion will
be rejected.
the age column will now accept only reasonable adult ages.
and the gender column will now accept only 'M' or 'F' values.
please note: we have not declared the NOT NULL clause, so age = NULL and gender = NULL are still
considered to be valid values.

about SQLite data-types

Very shortly said: SQLite hasn't data-types at all ...
You are absolutely free to insert any data-type on every column: the column declared data-type simply have a
decorative role, but isn't neither checked not enforced at all.
This one absolutely is not a bug: it's more a peculiar design choice.
Anyway, any other different DBMS applies strong data-type qualification and enforcement, so the SQLite's own
behavior may easily look odd and puzzling. Be warned.

Anyway SQLite internally supports the following data-types:

NULL: no value at all.
INTEGER: actually 64bit integers, so to support really huge values.
DOUBLE: floating point, double precision.
TEXT: any UTF-8 encoded text string, of unconstrained arbitrary length.
BLOB: any generic Binary Long Object, of unconstrained arbitrary length.

Remember: each single cell (row/column intersection) can store any arbitrary data-type.
One unique exception exists: columns declared as INTEGER PRIMARY KEY absolutely require integer values.

ALTER TABLE peoples2
 ADD COLUMN cell_phone TEXT;

You can add any further column even after the initial table creation.

Yet another SQLite's own very peculiar design choice.

dropping columns is unsupported.
renaming columns is unsupported.

i.e. once you've created a column there is no way at all to change its initial definition.

ALTER TABLE peoples2
 RENAME TO peoples_ok;

Anyway you are absolutely free to change the table name.

DROP TABLE peoples;

And this will completely erase the table (and its whole content) from the DB.

CREATE INDEX idx_peoples_phone
 ON peoples_ok (phone);

This will create an Index.

SpatiaLite Cookbook

DROP INDEX idx_peoples_phone;

And this will destroy the same Index.

CREATE UNIQUE INDEX idx_peoples_name
 ON peoples_ok (last_name, first_name);

an Index can support more columns.
declaring the UNIQUE clause implements a further constraint:
once some value is already defined, any further attempt to insert the same value will then fail.

PRAGMA table_info(peoples_ok);

cid name type notnull dflt_value pk

0 id INTEGER 1 NULL 1

1 first_name TEXT 1 NULL 0

2 last_name TEXT 1 NULL 0

3 age INTEGER 0 NULL 0

4 gender TEXT 0 NULL 0

5 phone TEXT 0 NULL 0

6 cell_phone TEXT 0 NULL 0

You can use PRAGMA table_info(...) in order to query a table layout.

PRAGMA index_list(peoples_ok);

seq name unique

0 idx_peoples_phone 0

1 idx_peoples_name 1

PRAGMA index_info(idx_peoples_name);

seqno cid name

0 2 last_name

1 1 first_name

And using PRAGMA index_list(...) and PRAGMA index_info(...) you can easily query the corresponding Index
layout.

SpatiaLite Cookbook

Recipe #6:
Creating a new Geometry column

2011 January 28

We'll now examine in deeper detail how to correctly define a Geometry-type column.
SpatiaLite follows an approach very closely related to the one adopted by PostgreSQL/PostGIS;
i.e. creating a Geometry-type at the same time the corresponding table is created isn't allowed.
You always must first create the table, then adding the Geometry-column in a second time and as a separate step.

CREATE TABLE test_geom (
 id INTEGER NOT NULL
 PRIMARY KEY AUTOINCREMENT,
 name TEXT NOT NULL,
 measured_value DOUBLE NOT NULL);

SELECT AddGeometryColumn('test_geom', 'the_geom',
 4326, 'POINT', 'XY');

This is the only supported way to get a completely valid Geometry.
Any different approach will surely produce an incorrect and unreliable Geometry.

SELECT AddGeometryColumn('test_geom', 'the_geom',
 4326, 'POINT', 'XY', 0);

SELECT AddGeometryColumn('test_geom', 'the_geom',
 4326, 'POINT', 'XY', 1);

Although the previous one surely is the most often used form, this one the complete form supported by
AddGeometryColumn():

the last (optional) arguments actually means: NOT NULL
setting a value ZERO (assumed to be the default value if omitted) then the Geometry column will accept NULL
values.
otherwise only NOT NULL geometries will be accepted.

Supported SRIDs:

any possible SRID defined within the spatial_ref_sys metadata table.
or -1 to politely denote any unknown / unspecified SRS.

Supported Geometry-types:
Geometry Type Notes

POINT

the commonly used Geometry-types:
corresponding to Shapefile's specs
supported by any desktop GIS apps

LINESTRING

POLYGON

MULTIPOINT

SpatiaLite Cookbook

MULTILINESTRING

MULTIPOLYGON

GEOMETRYCOLLECTION Not often used: unsupported by Shapefile and desktop GIS apps

GEOMETRY A generic container supporting any possible geometry-class
Not often used: unsupported by Shapefile and desktop GIS apps

Supported Dimension-models:
Dimension model Alias Notes

XY 2 X and Y coords (simple 2D)

XYZ 3 X, Y and Z coords (3D)

XYM X and Y coords + measure value M

XYZM X, Y and Z coords + measure value M

Please note well: this one is a very frequent pitfall.
Many developers, GIS professionals and alike obviously feel to be much smarter than this, so they often tend to
invent some highly imaginative alternative way to create their own Geometries.
e.g. bungling someway the geometry_columns table seems to be a very popular practice.

May well be that such creative methods will actually work with some very specific SpatiaLite's version; but for
sure some severe incompatibility will raise before or after ...

Be warned: only Geometries created using AddGeometryColumn() are fully legitimate.
Any different approach is completely unsafe (and unsupported ..)

I suppose that directly checking how AddGeometryColumn() affects the database may help you to understand
better.

PRAGMA table_info(test_geom);

cid name type notnull dflt_value pk

0 id INTEGER 1 NULL 1

1 name TEXT 1 NULL 0

2 measured_value DOUBLE 1 NULL 0

3 the_geom POINT 0 NULL 0

step 1: a new test_geom column has been added to the corresponding table.

SELECT *
FROM geometry_columns
WHERE f_table_name LIKE 'test_geom';

f_table_name f_geometry_column type coord_dimension srid spatial_index_enabled

test_geom the_geom POINT XY 4326 0

step 2: a corresponding row has been inserted into the geometry_columns metadata table.

SELECT *
FROM sqlite_master
WHERE type = 'trigger'
 AND tbl_name LIKE 'test_geom';

SpatiaLite Cookbook

type name tbl_name rootpage sql

trigger ggi_test_geom_the_geom test_geom 0

CREATE TRIGGER "ggi_test_geom_the_geom" BEFORE INSERT ON "test_geom"
FOR EACH ROW BEGIN
SELECT RAISE(ROLLBACK, 'test_geom.the_geom violates Geometry constraint
[geom-type or SRID not allowed]')
WHERE (SELECT type FROM geometry_columns
WHERE f_table_name = 'test_geom' AND f_geometry_column = 'the_geom'
AND GeometryConstraints(NEW."the_geom", type, srid, 'XY') = 1) IS NULL;
END

trigger ggu_test_geom_the_geom test_geom 0

CREATE TRIGGER "ggu_test_geom_the_geom" BEFORE UPDATE ON
"test_geom"
FOR EACH ROW BEGIN
SELECT RAISE(ROLLBACK, 'test_geom.the_geom violates Geometry constraint
[geom-type or SRID not allowed]')
WHERE (SELECT type FROM geometry_columns
WHERE f_table_name = 'test_geom' AND f_geometry_column = 'the_geom'
AND GeometryConstraints(NEW."the_geom", type, srid, 'XY') = 1) IS NULL;
END

step 3: the sqlite_master is the main metadata table used by SQLite to store internal objects.
As you can easily notice, each Geometry requires some triggers to be fully supported and well integrated into the
DBMS workflow.
Not at all surprisingly, all this has to be defined in a strongly self-consistent way in order to let SpatiaLite work as
expected.
If some element is missing or badly defined, the obvious consequence will be a defective and unreliable Spatial
DBMS.

SELECT DiscardGeometryColumn('test_geom', 'the_geom');

This will remove any metadata and any trigger related to the given Geometry.
Please note: anyway this will leave any geometry-value stored within the corresponding table absolutely
untouched.
Simply, after calling DiscardGeometryColumn(...) they aren't any longer fully qualified geometries, but
anonymous and generic BLOB values.

SELECT RecoverGeometryColumn('test_geom', 'the_geom',
 4326, 'POINT', 'XY');

This will attempt to recreate any metadata and any trigger related to the given Geometry.
If the operation successfully completes, then the Geometry column is fully qualified.
In other words, there is absolutely no difference between a Geometry created by AddGeometryColumn() and
another created by RecoverGeometryColumn().
Very simply explained:

AddGeometryColumn() is intended to create a new, empty column.
RecoverGeometryColumn() is intended to recover in a second time an already existing (and populated)
column.

Compatibility issues between different versions

SpatiaLite isn't eternally immutable.
Like any other human artifact and any other software package SpatiaLite tends to evolve during the time; and
SQLite as well evolves during the time.

Solemn commitment: you are absolutely granted that any database-file generated by some previous (older)
version can be safely operated using any later (newer) version of both SQLite and SpatiaLite.

Please note well: the opposite isn't necessarily true.
Attempting to operate a database-file generated by a most recent (newer) version using any previous (older)
version may easily be impossible at all, or may cause some more or less serious trouble.

SpatiaLite Cookbook

Sometimes circumventing version-related issues is inherently impossible: e.g. there is absolutely no way to use 3D
geometries on obsolescent versions, because the required support was introduced in more recent times.
But in many other cases such issues are simply caused by some incompatible binary function required by triggers.

Useful hint

To resolve any trigger-related incompatibility you can simply try to:

remove first any trigger: the best way you can follow is using DiscardGeometryColumn()
and then recreate again the triggers using AddGeometryColumn()

This will ensure that any metadata info and trigger will surely match expectations of your binary library current
version.

SpatiaLite Cookbook

Recipe #7:
Insert, Update and Delete

2011 January 28

Since now we've mainly examined how to query tables.
SQL isn't obviously a read-only language: inserting new rows, deleting existing rows and updating values is
supported in the most flexible way.

It's now time to examine such topics in deeper detail.

CREATE TABLE test_geom (
 id INTEGER NOT NULL
 PRIMARY KEY AUTOINCREMENT,
 name TEXT NOT NULL,
 measured_value DOUBLE NOT NULL);

SELECT AddGeometryColumn('test_geom', 'the_geom',
 4326, 'POINT', 'XY');

Nothing new in this: it's exactly the same table we've already created in the previous example.

INSERT INTO test_geom
 (id, name, measured_value, the_geom)
 VALUES (NULL, 'first point', 1.23456,
 GeomFromText('POINT(1.01 2.02)', 4326));

INSERT INTO test_geom
 VALUES (NULL, 'second point', 2.34567,
 GeomFromText('POINT(2.02 3.03)', 4326));

INSERT INTO test_geom
 (id, name, measured_value, the_geom)
 VALUES (10, 'tenth point', 10.123456789,
 GeomFromText ('POINT(10.01 10.02)', 4326));

INSERT INTO test_geom
 (the_geom, measured_value, name, id)
 VALUES (GeomFromText('POINT(11.01 11.02)', 4326),
 11.123456789, 'eleventh point', NULL);

INSERT INTO test_geom
 (id, measured_value, the_geom, name)
 VALUES (NULL, 12.123456789, NULL, 'twelfth point');

The INSERT INTO (...) VALUES (...) statement does exactly what its name states:

the first list enumerates the column names
and the second list contains the values to be inserted: correspondences between columns and values are
established by position.
you can simply suppress the column-names list (please, see the second INSERT statement):
anyway this one isn't a good practice, because such statement implicitly relies upon some default column
order, and that's not at all a safe assumption.
another interesting point; this table declares a PRIMARY KEY AUTOINCREMENT:

as a general rule we've passed a corresponding NULL value, so to allow SQLite autogenerating a unique
value.
but in the third INSERT we've set an explicit value (please, check in the following paragraph what

SpatiaLite Cookbook

really happens in this case).

SELECT *
FROM test_geom;

id name measured_value the_geom

1 first point 1.234560 BLOB sz=60 GEOMETRY

2 second point 2.345670 BLOB sz=60 GEOMETRY

10 tenth point 10.123457 BLOB sz=60 GEOMETRY

11 eleventh point 11.123457 BLOB sz=60 GEOMETRY

12 twelfth point 12.123457 NULL

Just a quick check before going further on ...

INSERT INTO test_geom
 VALUES (2, 'POINT #2', 2.2,
 GeomFromText('POINT(2.22 3.33)', 4326));

This further INSERT will loudly fail, raising a constraint failed exception.
Accounting for this isn't too much difficult: a PRIMARY KEY always enforces a uniqueness constraint.
And actually one row of id = 2 already exists into this table.

INSERT OR IGNORE INTO test_geom
 VALUES (2, 'POINT #2', 2.2,
 GeomFromText('POINT(2.22 3.33)', 4326));

By specifying an OR IGNORE clause this statement will now silently fail (same reason as before).

INSERT OR REPLACE INTO test_geom
 VALUES (2, 'POINT #2', 2.2,
 GeomFromText('POINT(2.22 3.33)', 4326));

There is a further variant: i.e. specifying an OR REPLACE clause this statement will actually act like an UPDATE

REPLACE INTO test_geom
 (id, name, measured_value, the_geom)
 VALUES (3, 'POINT #3', 3.3,
 GeomFromText('POINT(3.33 4.44)', 4326));

REPLACE INTO test_geom
 (id, name, measured_value, the_geom)
 VALUES (11, 'POINT #11', 11.11,
 GeomFromText('POINT(11.33 11.44)', 4326));

And yet another syntactic alternative is supported, i.e. simply using REPLACE INTO:
but this latter simply is an alias for INSERT OR REPLACE.

SELECT *
FROM test_geom;

id name measured_value the_geom

1 first point 1.234560 BLOB sz=60 GEOMETRY

2 POINT #2 2.200000 BLOB sz=60 GEOMETRY

3 POINT #3 3.300000 BLOB sz=60 GEOMETRY

10 tenth point 10.123457 BLOB sz=60 GEOMETRY

11 POINT #11 11.110000 BLOB sz=60 GEOMETRY

12 twelfth point 12.123457 NULL

Just another quick check ...

SpatiaLite Cookbook

UPDATE test_geom SET
 name = 'point-3',
 measured_value = 0.003
WHERE id = 3;

UPDATE test_geom SET
 measured_value = measured_value + 1000000.0
WHERE id > 10;

updating values isn't much more complex ...

DELETE FROM test_geom
WHERE (id % 2) = 0;

and the same is for deleting rows.
i.e. this DELETE statement will affect every even id value.

SELECT *
FROM test_geom;

id name measured_value the_geom

1 first point 1.234560 BLOB sz=60 GEOMETRY

3 point-3 0.003000 BLOB sz=60 GEOMETRY

11 POINT #11 1000011.110000 BLOB sz=60 GEOMETRY

A last final quick check ...

Very important notice

Be warned: calling an UPDATE or DELETE statement without specifying any corresponding WHERE clause is a full
legal operation in SQL.
Anyway SQL intends that the corresponding change must indiscriminately affect any row within the table: and
sometimes this is exactly what you intended to do.

But (much more often) this is a wonderful way allowing to unintentionally destroy or to irreversibly corrupt your
data: beginner, pay careful attention.

SpatiaLite Cookbook

Recipe #8:
Understanding Constraints

2011 January 28

Understanding what constraints are is a very simple task following a conceptual approach.
But on the other side understanding why some SQL statement will actually fail raising a generic constraint failed
exception isn't a so simple affair.

In order to let you understand better this paragraph is structured like a quiz:

you'll find first the questions.
corresponding answers are positioned at bottom.

Important notice:
in order to preserve your main sample database untouched, creating a different database for this session is
strongly suggested.

GETTING STARTED

CREATE TABLE mothers (
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 CONSTRAINT pk_mothers
 PRIMARY KEY (last_name, first_name));

SELECT AddGeometryColumn('mothers', 'home_location',
 4326, 'POINT', 'XY', 1);

CREATE TABLE children (
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 mom_first_nm TEXT NOT NULL,
 mom_last_nm TEXT NOT NULL,
 gender TEXT NOT NULL
 CONSTRAINT sex CHECK (
 gender IN ('M', 'F')),
 CONSTRAINT pk_childs
 PRIMARY KEY (last_name, first_name),
 CONSTRAINT fk_childs
 FOREIGN KEY (mom_last_nm, mom_first_nm)
 REFERENCES mothers (last_name, first_name));

INSERT INTO mothers (first_name, last_name, home_location)
 VALUES ('Stephanie', 'Smith',
 ST_GeomFromText('POINT(0.8 52.1)', 4326));

INSERT INTO mothers (first_name, last_name, home_location)
 VALUES ('Antoinette', 'Dupont',
 ST_GeomFromText('POINT(4.7 45.6)', 4326));

INSERT INTO mothers (first_name, last_name, home_location)
 VALUES ('Maria', 'Rossi',
 ST_GeomFromText('POINT(11.2 43.2)', 4326));

SpatiaLite Cookbook

INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('George', 'Brown', 'Stephanie', 'Smith', 'M');

INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Janet', 'Brown', 'Stephanie', 'Smith', 'F');

INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Chantal', 'Petit', 'Antoinette', 'Dupont', 'F');

INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Henry', 'Petit', 'Antoinette', 'Dupont', 'M');

INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Luigi', 'Bianchi', 'Maria', 'Rossi', 'M');

Nothing too much complex: we simply have created two tables:

the mothers table contains a Geometry column
a relation exists between mothers and children: and consequently a FOREIGN KEY has been defined.
just a last point to be noted: in this example we'll use PRIMARY KEYs spanning across two columns:
but there isn't nothing odd in this ... it's a fully legitimate SQL option.

And then we have inserted very few rows into these tables.

SELECT m.last_name AS MomLastName,
 m.first_name AS MomFirstName,
 ST_X(m.home_location) AS HomeLongitude,
 ST_Y(m.home_location) AS HomeLatitude,
 c.last_name AS ChildLastName,
 c.first_name AS ChildFirstName,
 c.gender AS ChildGender
FROM mothers AS m
JOIN children AS c ON (
 m.first_name = c.mom_first_nm
 AND m.last_name = c.mom_last_nm);

MomLastName MomFirstName HomeLongitude HomeLatitude ChildLastName ChildFirstName ChildGender

Smith Stephanie 0.8 52.1 Brown George M

Smith Stephanie 0.8 52.1 Brown Janet F

Dupont Antoinette 4.7 45.6 Petit Chantal F

Dupont Antoinette 4.7 45.6 Petit Henry M

Rossi Maria 11.2 43.2 Bianchi Luigi M

Just a simple check; and then you are now ready to start.

QUESTIONS

Q1: why this SQL statement will actually fail, raising a constraint failed exception ?
INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm)
 VALUES ('Silvia', 'Bianchi', 'Maria', 'Rossi');

Q2: ... same question ...
INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Silvia', 'Bianchi', 'Maria', 'Rossi', 'f');

Q3: ... same question ...

SpatiaLite Cookbook

INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Silvia', 'Bianchi', 'Giovanna', 'Rossi', 'F');

Q4: ... same question ...
INSERT INTO children
 (first_name, last_name, mom_first_nm, mom_last_nm, gender)
 VALUES ('Henry', 'Petit', 'Stephanie', 'Smith', 'M');

Q5: ... same question ...
INSERT INTO mothers (first_name, last_name, home_location)
 VALUES ('Pilar', 'Fernandez',
 ST_GeomFromText('POINT(4.7 45.6)'));

Q6: ... same question ...
INSERT INTO mothers (first_name, last_name, home_location)
 VALUES ('Pilar', 'Fernandez',
 ST_GeomFromText('MULTIPOINT(4.7 45.6, 4.75 45.32)', 4326));

Q7: ... same question ...
INSERT INTO mothers (first_name, last_name)
 VALUES ('Pilar', 'Fernandez');

Q8: ... same question ...
INSERT INTO mothers (first_name, last_name, home_location)
 VALUES ('Pilar', 'Fernandez',
 ST_GeomFromText('POINT(4.7 45.6), 4326'));

Q9: ... same question ...
DELETE FROM mothers
WHERE last_name = 'Dupont';

Q10: ... same question ...
UPDATE mothers SET first_name = 'Marianne'
WHERE last_name = 'Dupont';

ANSWERS

A1: missing/undefined gender: so a NULL value is implicitly assumed.
But a NOT NULL constraint has been defined for the gender column.

A2: wrong gender value ('f'): SQLite text strings are case-sensitive.
The sex constraint can only validate 'M' or 'F' values: 'f' isn't an acceptable value.

A3: FOREIGN KEY failure.
No matching entry {'Rossi','Giovanna'} was found into the corresponding table [mothers].

A4: PRIMARY KEY failure.
An entry {'Petit','Henry'} is already stored into the children table.

A5: missing/undefined SRID: so a -1 value is implicitly assumed.
But a Geometry constraint has been defined for the corresponding column; an explicitly set 4326 SRID value is
expected anyway for home_location geometries.

A6: wrong Geometry-type: only POINT-type Geometries will pass validation for the home_location column.

A7: missing/undefined home_location: so a NULL value is implicitly assumed.
But a NOT NULL constraint has been defined for the home_location column.

SpatiaLite Cookbook

A8: malformed WKT expression: ST_GeomFromText() will return NULL (same as above).

A9: FOREIGN KEY failure: yes, the mothers table has no FOREIGN KEY.
But the children table instead has a corresponding FOREIGN KEY.
Deleting this entry from mothers will break referential integrity, so this one isn't an allowed operation.

A10: FOREIGN KEY failure: more or less, the same of before.
Modifying a PRIMARY KEY entry into the mothers table will break referential integrity, so this operation as well
isn't admissible.

Lesson to learn #1:
An appropriate use of SQL constraints strongly helps to fully preserve your data in a well checked and absolutely
consistent state.
Anyway, defining too much constraints may easily transform your database into a kind of inexpugnable fortress
surrounded by trenches, pillboxes, barbed wire and minefields.
i.e. into something that surely nobody will define as user friendly.
Use sound common sense, and possibly avoid any excess.

Lesson to lean #2:
Each time the SQL-engine detects some constraint violation, a constraint failed exception will be immediately
raised.
But this one is an absolutely generic error condition: so you have to use your experience and skilled knowledge
in order to correctly understand (and possibly resolve) any possible glitch.

SpatiaLite Cookbook

Recipe #9:
ACIDity: undestranding

Transactions
2011 January 28

ACID has nothing to do with chemistry (pH, hydrogen and hydroxide ions and so on).
In the DBMS context this one is an acronym meaning:

Atomicity
Consistency
Insulation
Durability

Very simply explained:

a DBMS is designed to store complex data: sophisticated relations and constraints have to be carefully
checked and validated.
Data self-consistency has to be strongly preserved anyway.
each time an INSERT, UPDATE or DELETE statement is performed, data self-consistency is at risk.
If one single change fails (for any reason), this may leave the whole DB in an inconsistent state.
any properly ACID compliant DBMS brilliantly resolves any such potential issue.

The underlying concept is based on a TRANSACTION-based approach:

a TRANSACTION encloses an arbitrary group of SQL statements.
a TRANSACTION is granted to be performed as an atomic unit, adopting an all-or-nothing approach.

if any statement enclosed within a TRANSACTION successfully completes, than the TRANSACTION itself
can successfully complete.
but if a single statement fails, then the whole TRANSACTION will fail: and the DB will be left exactly
in the previous state, as it was before the TRASACTION started.

that's not all: any change occurred in a TRANSACTION context is absolutely invisible to any other DBMB
connection, because a TRANSACTION defines an insulated private context.

Anyway, performing some direct test surely is the simplest way to understand TRANSACTIONs.

BEGIN;

CREATE TABLE test (
 num INTEGER,
 string TEXT);

INSERT INTO test (num, string)
 VALUES (1, 'aaaa');

INSERT INTO test (num, string)
 VALUES (2, 'bbbb');

SpatiaLite Cookbook

INSERT INTO test (num, string)
 VALUES (3, 'cccc');

The BEGIN statement will start a TRANSACTION:

after this declaration, any subsequent statement will be handled within the current TRANSACTION context.
you can also use the BEGIN TRANSACTION alias, but this is redundantly verbose, and not often used.
SQLite forbids multiple nested transactions: you can simply declare an unique pending TRANSACTION at each
time.

SELECT *
FROM test;

You can now check your work: there is nothing odd in this, isn't ?
Absolutely anything looks as expected.

Anyway, some relevant consequence arises from the initial BEGIN declaration:

now you have a still pending (unfinished, not completed) TRANSACTION
you can perform a first simple check:

open a second spatialite_gui instance, connecting the same DB
are you able to see the test table ?
NO: because this table has been created in the private (insulated) context of the first
spatialite_gui instance, and so for any other different connection this table simply does not yet
exists.

and than you can perform a second check:
quit both spatialite_gui instances.
then launch again spatialite_gui.
there is no test table at all: it seems disappeared, completely vanishing.
but all this is easily explained: the corresponding TRANSACTION was never confirmed.
and when the holding connection terminated, then SQLite invalidated any operation within this
TRANSACTION, so to leave the DB exactly in the previous state.

COMMIT;

ROLLBACK;

Once you BEGIN a TRANSACTION, any subsequent statement will be left in a pending (uncommitted) state.
Before or after you are expected to:

close positively the TRANSACTION (confirm), by declaring a COMMIT statement.
any change applied to the DB will be confirmed and consolidated in a definitive way.
such changes will become immediately visible to other connections.

close negatively the TRANSACTION (invalidate), by declaring a ROLLBACK statement.
any change applied to the DB will be rejected: the DB will be reverted to the previous state.

if you omit declaring neither COMMIT nor ROLLBACK, then SQLite prudentially assumes that the still pending
TRANSACTION is an invalid one, and a ROLLBACK will be implicitly performed.
if any error or exception is encountered within a TRANSACTION context, than the whole TRANSACTION is
invalidated, and a ROLLBACK is implicitly performed.

Performance Hints

Handling TRANSACTIONs seems too much complex to you ? so you are thinking "I'll simply ignore all this ..."
Well, carefully consider that SQLite is a full ACID DBMS, so it's purposely designed to handle TRANSACTIONs. And
that's not all.

SpatiaLite Cookbook

SQLite actually is completely unable to operate outside a TRANSACTION context.
Each time you miss to explicitly declare some BEGIN / COMMIT, then SQLite implicitly enters the so called
AUTOCOMMIT mode:
each single statement will be handled as a self-standing TRANSACTION.

i.e. when you declare e.g. some simple INSERT INTO ... statement, then SQLite silently translates this into:
BEGIN;
INSERT INTO ...;
COMMIT;

Please note well: this is absolutely safe and acceptable when you are inserting few rows by hand-writing.
But when some C / C++ / Java / Python process attempts to INSERT many and many rows (maybe many million
rows), this will impose an unacceptable overhead.
In other words, your process will perform very poorly, taking an unneeded long time to complete: and all this is
simply caused by not declaring an explicit TRANSACTION.

The strongly suggested way to perform fast INSERTs (UPDATE, DELETE ...) is the following one:

explicitly start a TRANSACTION (BEGIN)
loop on INSERT as long as required.
confirm the pending TRANSACTION (COMMIT).

And this simple trick will grant you very brilliant performances.

Connectors oddities (true life tales)

Developers, be warned: different languages, different connectors, different default settings ...

C / C++ developers will directly use the SQLite's API: in this environment the developer is expected to explicitly
declare TRANSACTIONs as required, by calling:

sqlite3_exec (db_handle, "BEGIN", NULL, NULL, &err_msg);
sqlite3_exec (db_handle, "COMMIT", NULL, NULL, &err_msg);

Java / JDBC connectors more or less follow the same approach: the developer is expected to explicitly quit the
AUTOCOMMIT mode, then declaring a COMMIT when required and appropriate:

conn.setAutoCommit(false);
conn.commit();

Shortly said: in C / C++ and Java the developer is required to start a TRANSACTION in order to perform fast DB
INSERTs.
Omitting this step will cause very slow performance. But at least any change will surely affect the underlying
DB.

Python follows a completely different approach: a TRANSACTION is silently active at each time.
Performance always is optimal.
But forgetting to explicitly call conn.commit() before quitting, any applied change will be lost forever
immediately after terminating the connection.
And this may really be puzzling for beginners, I suppose.

SpatiaLite Cookbook

Recipe #10:
Wonderful R*Tree Spatial Index

2011 January 28

A Spatial Index more or less is like any other Index: i.e. the intended role of any Index is to support really fast
search of selected items within an huge dataset.

Simply think of some huge textbook: searching some specific item by reading the whole book surely is painful,
and may require a very long time.
But you can actually look at the textbook's index, then simply jumping to the appropriate page(s).

Any DB index plays exactly the same identical role.
Anyway, searching Geometries falling within a given search frame isn't the same of searching a text string or a
number: so a different Index type is required. i.e. a Spatial Index.

Several algorithms supporting a Spatial Index has been defined during the past years.
SQLite's Spatial Index is based on the R*Tree algorithm.

SpatiaLite Cookbook

Very shortly said, an R*Tree defines a tree-like structure based on rectangles (the R in R*Tree stands exactly for
Rectangle).

Every arbitrary Geometry can be represented as a rectangle, irrelevantly of its actual shape: we can simply use the
MBR (Minimum Bounding Rectangle) corresponding to such Geometry.
May well be the term BBOX (Bounding Box) is more familiar to you: both terms are exact synonyms.

It's now quite intuitive understanding how the R*Tree does actually works:

Spatial query defines an arbitrary search frame (this too being a rectangle)
the R*Tree is quickly scanned identifying any overlapping index rectangle

http://en.wikipedia.org/wiki/File:R-tree.svg

SpatiaLite Cookbook

and finally any individual Geometry falling withing the search frame will be identified.>

Think of the well known needle in the hay problem: using an R*Tree is an excellent solution allowing to find the
needle in a very short time, even when the hay actually is an impressively huge one.

Common misconceptions and misunderstandings

“I have a table storing several zillion points disseminated all around the world:
drawing a map was really painful and required a very long time.
Then I found somewhere some useful hint, so I've created a Spatial Index on this table.
And now my maps are drawn very quickly, as a general case.
Anyway I'm strongly puzzled, because drawing a worldwide map still takes a very long time.
Why the Spatial Index doesn't work on worldwide map ?”

The answer is elementary simple: the Spatial Index can speed up processing only when a small selected portion
of the dataset has to be retrieved.
But when the whole (or a very large part of) dataset has to be retrieved, obviously the Spatial Index cannot give
any speed benefit.
To be pedantic, under such conditions using the Spatial Index introduces further slowness, because inquiring the
R*Tree imposes a strong overhead.

Conclusion: the Spatial Index isn't a magic wand. The Spatial Index basically is like a filter.

when the selected frame covers a very small region of the whole dataset, using the Spatial Index implies a
ludicrous gain.
when the selected region covers a wide region, using the Spatial Index implies a moderate gain.
but when the selected region covers the whole dataset (or nearly covers the whole dataset), using the
Spatial Index implies a further cost.

SQLite's R*Tree implementation details

SQLite supports a first class R*Tree: anyway, some implementation details surely may seem strongly exotic for
users accustomed to other different Spatial DBMS (such as PostGIS and so on).

Any R*Tree on SQLite actually requires four strictly correlated tables:

rtreebasename_node stores (binary format) the R*Tree elementary nodes.
rtreebasename_parent stores relations connecting parent and child nodes.
rtreebasename_rowid stores ROWID values connecting an R*Tree node and a corresponding row into the
indexed table.

none of these three tables is intended to be directly accessed: they are reserved for internal
management.

rtreebasename actually is a Virtual Table, and exposes the R*Tree for any external access.
important notice: never attempt to directly bungle or botch any R*Tree related table;
quite surely such attempt will simply irreversibly corrupt the R*Tree. You are warned.

SELECT *
FROM rtreebasename;

pkuid miny maxx miny maxy

1022 313361.000000 331410.531250 4987924.000000 5003326.000000

1175 319169.218750 336074.093750 4983982.000000 4998057.500000

1232 329932.468750 337638.812500 4989399.000000 4997615.500000

...

SpatiaLite Cookbook

Any R*Tree table looks like this one:

The pkid column contains ROWID values.
minx, maxx, miny and maxy defines MBR extreme points.

The R*Tree internal logic is magically implemented by the Virtual Table.

SpatiaLite's support for R*Tree

Any SpatiaLite Spatial Index fully relies on a corresponding SQLite R*Tree.
Anyway SpatiaLite smoothly integrates the R*Tree, so to make table handling absolutely painless:

each time you perform an INSERT, UPDATE or DELETE affecting the main table, then SpatiaLite automatically
take care to correctly reflect any change into the corresponding R*Tree.
some triggers will grant such synchronization.
so, once you've defined a Spatial Index, you can completely forget it.

Any SpatiaLite's Spatial Index always adopts the following naming convention:

assuming a table named local_councils containing the geometry column.
the corresponding Spatial Index will be named idx_local_councils_geometry
and idx.local_councils.pkid will relationally reference local_councils.ROWID.

Anyway using the Spatial Index so to speed up Spatial queries execution is a little bit more difficult than in other
Spatial DBMS, because there is no tight integration between the main table and the corresponding R*Tree: in the
SQLite's own perspective they simply are two distinct tables.

Accordingly to all this, using a Spatial Index requires performing a JOIN, and (may be) defining a sub-query.
You can find lots of examples about Spatial Index usage on SpatiaLite into the Haute Cuisine section.

SELECT CreateSpatialIndex('local_councils', 'geometry');

SELECT CreateSpatialIndex('populated_places', 'geometry');

This simple declaration is all you are required to specify in order to set a Spatial Index corresponding to some
Geometry column. And that's all.

SELECT DiscardSpatialIndex('local_councils', 'geometry');

And this will remove a Spatial Index:

please note: this will not DROP the Spatial Index (you must perform this operation in a separate step).
anyway related metadata are set so to discard the Spatial Index, and any related TRIGGER will be immediately
removed.

SpatiaLite supports a second alternitive Spatial Index based on MBR-caching.
This one simply is a historical legacy, so using MBR-caching is strongly discouraged.

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/index.html#haute_cuisine

SpatiaLite Cookbook

recipe #11
Guinness Book of Records

2011 January 28

Local Council County Region

ATRANI SALERNO CAMPANIA

BARDONECCHIA TORINO PIEMONTE

BRIGA ALTA CUNEO PIEMONTE

CASAVATORE NAPOLI CAMPANIA

LAMPEDUSA E LINOSA AGRIGENTO SICILIA

LU ALESSANDRIA PIEMONTE

MORTERONE LECCO LOMBARDIA

NE GENOVA LIGURIA

OTRANTO LECCE PUGLIA

PINO SULLA SPONDA DEL LAGO MAGGIOR VARESE LOMBARDIA

PREDOI BOLZANO TRENTINO-ALTO ADIGE

RE VERBANO-CUSIO-OSSOLA PIEMONTE

RO FERRARA EMILIA-ROMAGNA

ROMA ROMA LAZIO

SAN VALENTINO IN ABRUZZO CITERIORE PESCARA ABRUZZO

VO PADOVA VENETO

The above list of Local Councils really is a kind of Guinness Book of Records.
For one reason or the other each one of them really has something absolutely exceptional and worth of note.
May well be you are really puzzled and surprised while reading this, because (with the notable exception of Rome)
none of them is within the most renowned places of Italy.
Anyway, the explanation is really simple:

Roma has the biggest population: 2,546,804 peoples
Morterone has the smallest population: 33 peoples
Roma (again) has the biggest area: 1,287 km²
Atrani has the smallest area: 0.1 km²
Casavatore has the highest population density: 13,627.5 peoples/km²
Briga Alta has the lowest population density: 1.2 peoples/km²
Pino sulla sponda del Lago Maggior(e) and San Valentino in Abruzzo Citeriore share the privilege to
have the longest name.
on the other side Lu, Ne, Re, Ro and Vo have the shortest name.
Predoi is the northernmost
Lampedua e Linosa is the southernmost
Bardonecchia is the westernmost
Otranto is the easternmost

SpatiaLite Cookbook

Discovering such highly (un)useful Guinness Records collection is quite easy.
You simply have to execute the following SQL query.

SELECT lc.lc_name AS LocalCouncil,
 c.county_name AS County,
 r.region_name AS Region,
 lc.population AS Population,
 ST_Area(lc.geometry) / 1000000.0 AS "Area sqKm",
 lc.population / (ST_Area(lc.geometry) / 1000000.0)
 AS "PopDensity [peoples/sqKm]",
 Length(lc.lc_name) AS NameLength,
 MbrMaxY(lc.geometry) AS North,
 MbrMinY(lc.geometry) AS South,
 MbrMinX(lc.geometry) AS West,
 MbrMaxX(lc.geometry) AS East
FROM local_councils AS lc
JOIN counties AS c ON (c.county_id = lc.county_id)
JOIN regions AS r ON (r.region_id = c.region_id)
WHERE lc.lc_id IN (
 SELECT lc_id
 FROM local_councils
 WHERE population IN (
 SELECT Max(population)
 FROM local_councils
 UNION
 SELECT Min(population)
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE ST_Area(geometry) IN (
 SELECT Max(ST_area(geometry))
 FROM local_councils
 UNION
 SELECT Min(ST_Area(geometry))
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE population / (ST_Area(geometry) / 1000000.0) IN (
 SELECT Max(population / (ST_Area(geometry) / 1000000.0))
 FROM local_councils
 UNION
 SELECT MIN(population / (ST_Area(geometry) / 1000000.0))
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE Length(lc_name) IN (
 SELECT Max(Length(lc_name))
 FROM local_councils
 UNION
 SELECT Min(Length(lc_name))
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE MbrMaxY(geometry) IN (
 SELECT Max(MbrMaxY(geometry))
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE MbrMinY(geometry) IN (
 SELECT Min(MbrMinY(geometry))
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE MbrMaxX(geometry) IN (
 SELECT Max(MbrMaxX(geometry))
 FROM local_councils)
 UNION
 SELECT lc_id
 FROM local_councils
 WHERE MbrMinX(geometry) IN (
 SELECT Min(MbrMinX(geometry))
 FROM local_councils));

SpatiaLite Cookbook

Oh yes, this one surely isn't a simple and plain query.
But you are now consulting the High Cuisine Recipes.
So I suppose your intention was exactly the one to look for some really tasty and spicy SQL query:
and you've just got it. Feel happy.

After all the above SQL query is only apparently complex, but it real structure is surprisingly simple.
Let try rewriting the SQL query in a simplified form:

SELECT lc.lc_name AS LocalCouncil,
 c.county_name AS County,
 r.region_name AS Region,
 lc.population AS Population,
 ST_Area(lc.geometry) / 1000000.0 AS "Area sqKm",
 lc.population / (ST_Area(lc.geometry) / 1000000.0)
 AS "PopDensity [peoples/sqKm]",
 Length(lc.lc_name) AS NameLength,
 MbrMaxY(lc.geometry) AS North,
 MbrMinY(lc.geometry) AS South,
 MbrMinX(lc.geometry) AS West,
 MbrMaxX(lc.geometry) AS East
FROM local_councils AS lc
JOIN counties AS c ON (c.county_id = lc.county_id)
JOIN regions AS r ON (r.region_id = c.region_id)
WHERE lc.lc_id IN (... some list of values ...);

I suppose you can now easily understand what is the meaning of this SQL query.
There is absolutely nothing too much complex or difficult in this:

the local_councils table is JOINed to the counties table.
and the counties table is then JOINed to the regions table.
the ST_Area() Spatial function is used to calculate areas: an appropriate scale factor is applied so to get
measures expressed in km² rather than in m².
a numeric expression (not at all sophisticated or complex) is used to calculate population density expressed
in peoples/km²
a WHERE ... IN (...) clause is then used so to filter someway the result-set.

But you already know all this, so I suppose you are very little interested to get any further detail.
Quite obviously the most interesting things happen within the WHERE ... IN (...) clause;
and exactly here we'll now focus our attention.

...
SELECT Max(population)
FROM local_councils
...
SELECT Min(population)
FROM local_councils
...

This SQL snippet is really simple: each query simply computes a Min / Max value.

...
 SELECT Max(population)
 FROM local_councils
UNION
 SELECT Min(population)
 FROM local_councils
...

This is the first time we introduce an UNION statement:

this allows merging together two result-sets, so to get an unique result-set.
there is a condition to be satisfied: both the left-sided and the right-sided SELECTs must return the same
number of columns, and corresponding columns must have the same value-type.

SpatiaLite Cookbook

...
SELECT lc_id
FROM local_councils
WHERE population IN (
 SELECT Max(population)
 FROM local_councils
 UNION
 SELECT Min(population)
 FROM local_councils)
...

SQL supports a wonderful mechanism: the one known as sub-query.
You can define an inner query (which is executed first), then using any returned value into the outer (main) query.
Now the previous SQL snippet doesn't looks too much mysterious:

in this case the sub-query actually is an UNION query.
the left-sided query will return the Max(population) value.
the right-sided query will return the Min(population) value.
then UNION will merge both values into an unique result-set:
and this one is the result-set returned by the (inner) sub-query.
so the WHERE population IN (...) clause in the (outer) main query will simply receive two population-
values to be checked.
after all this, the (outer) main query will return a result-set which actually simply is a list of lc_id

...
 SELECT lc_id
 FROM local_councils
 WHERE population IN (
 SELECT Max(population)
 FROM local_councils
 UNION
 SELECT Min(population)
 FROM local_councils)
UNION
 SELECT lc_id
 FROM local_councils
 WHERE ST_Area(geometry) IN
 SELECT Max(ST_area(geometry))
 FROM local_councils
 UNION
 SELECT Min(ST_Area(geometry))
 FROM local_councils)
...

Nothing forbid us to nest more than one single UNION clauses: this one is a fully legitimate option.
Accordingly to this, the above SQL snippet has to be interpreted as follows:

we've already explained the leftmost query in the previous paragraph:
this will return a result-set containing a list of lc_id-values (Max/Min population-values).
the rightmost query performs a similar task:
this will return another result-set containing a further list of lc_id-values (Max/Min ST_Area(geometry)-
values).
so the second-level UNION clause will simply return a longer list of lc_id-values, i.e. the one resulting by
merging all together any previous intermediate result.
and so on ...

SELECT lc.lc_name AS LocalCouncil,
 c.county_name AS County,
 r.region_name AS Region,
 lc.population AS Population,
 ST_Area(lc.geometry) / 1000000.0 AS "Area sqKm",
 lc.population / (ST_Area(lc.geometry) / 1000000.0)
 AS "PopDensity [peoples/sqKm]",
 Length(lc.lc_name) AS NameLength,
 MbrMaxY(lc.geometry) AS North,

SpatiaLite Cookbook

 MbrMinY(lc.geometry) AS South,
 MbrMinX(lc.geometry) AS West,
 MbrMaxX(lc.geometry) AS East
FROM local_councils AS lc
JOIN counties AS c ON (c.county_id = lc.county_id)
JOIN regions AS r ON (r.region_id = c.region_id)
WHERE lc.lc_id IN (
--
-- a list of lc.lc_id values will be returned
-- by this complex sub-query
--
 SELECT lc_id
 FROM local_councils
 WHERE population IN (
--
-- this further sub-query will return
-- Min/Max POPULATION
--
 SELECT Max(population)
 FROM local_councils
 UNION
 SELECT Min(population)
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE ST_Area(geometry) IN (
--
-- this further sub-query will return
-- Min/Max ST_AREA()
--
 SELECT Max(ST_area(geometry))
 FROM local_councils
 UNION
 SELECT Min(ST_Area(geometry))
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE population / (ST_Area(geometry) / 1000000.0) IN (
--
-- this further sub-query will return
-- Min/Max POP-DENSITY
--
 SELECT Max(population / (ST_Area(geometry) / 1000000.0))
 FROM local_councils
 UNION
 SELECT MIN(population / (ST_Area(geometry) / 1000000.0))
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE Length(lc_name) IN (
--
-- this further sub-query will return
-- Min/Max NAME-LENGTH
--
 SELECT Max(Length(lc_name))
 FROM local_councils
 UNION
 SELECT Min(Length(lc_name))
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE MbrMaxY(geometry) IN (
--
-- this further sub-query will return
-- Max NORTH
--
 SELECT Max(MbrMaxY(geometry))
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE MbrMinY(geometry) IN (
--
-- this further sub-query will return
-- Max SOUTH
--

SpatiaLite Cookbook

 SELECT Min(MbrMinY(geometry))
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE MbrMaxX(geometry) IN (
--
-- this further sub-query will return
-- Max WEST
--
 SELECT Max(MbrMaxX(geometry))
 FROM local_councils)
 UNION -- merging into first-level sub-query
 SELECT lc_id
 FROM local_councils
 WHERE MbrMinX(geometry) IN (
--
-- this further sub-query will return
-- Max EAST
--
 SELECT Min(MbrMinX(geometry))
 FROM local_councils));

According to SQL syntax, using two consecutive hyphens (--) you can mark a comment.
i.e. any further text until the next line terminator is absolutely ignored by the SQL parser.
Placing appropriate comments within really complex SQL queries surely enhances readibility.

Conclusion: SQL is a wonderful language, fully supporting a regular and easily predictable syntax.
Each time you'll encounter some intimidating complex SQL query don't panic and don't be afraid:
simply attempt to break the complex statement into several smallest and simplest blocks, and you'll soon discover
that complexity was more apparent than real.

Useful hint: attempting to debug some very complex SQL statement is obviously a difficult and defatigating
task.
Breaking down a complex query into smallest chunks, then testing each one of them individually usually is the
best approach you can follow.

SpatiaLite Cookbook

Recipe #12
Neighbours

2011 January 28

The problem

Obviously each Local Council shares a common boundary with a neighbour:
[not an absolute rule, anyway: e.g. small islands are self-contained].
We'll use Spatial SQL to identify every adjacent couple of Local Councils.
Just to add some further complexity, we'll specifically focus our attention on the Tuscany region
boundaries.

Tuscan Local Council Tuscan County Neighbour LC County Region

ANGHIARI AREZZO CITERNA PERUGIA UMBRIA

AREZZO AREZZO MONTE SANTA MARIA TIBERINA PERUGIA UMBRIA

BIBBIENA AREZZO BAGNO DI ROMAGNA FORLI' - CESENA EMILIA-ROMAGNA

CHIUSI DELLA VERNA AREZZO BAGNO DI ROMAGNA FORLI' - CESENA EMILIA-ROMAGNA

CHIUSI DELLA VERNA AREZZO VERGHERETO FORLI' - CESENA EMILIA-ROMAGNA

...

SELECT lc1.lc_name AS "Local Council",
 lc2.lc_name AS "Neighbour"
FROM local_councils AS lc1,
 local_councils AS lc2
WHERE ST_Touches(lc1.geometry, lc2.geometry);

This first query is really simple:

the ST_Touches(geom1, geom2) function is used to evaluates the spatial relationship existing between
couples of Local Councils.
the local_council table is scanned twice, so to implement a JOIN;
in other words this simply allows to evaluate each Local Council against any other, in a
combinatory/permutative fashion.
obviously this may cause ambiguity.
We have to set an appropriate alias name (AS lc1 / AS lc2) so to uniquely identify each one of the two
table instances.

Anyway, a so simplistic approach implies several (strong, severe) issues:

this query surely will return the correct answer: but the process time will be very long.
[actually, so long to be absolutely not usable for any practical purpose].
explaining all this is really easy: evaluating ST_Touches() implies lots of complex calculations, so this one
is a really heavy (and lengthy) step.
following a pure combinatorial logic creates many million couples requiring to be evaluated.
conclusion: iterating many million times a lengthy operation is a sure recipe for disaster.

SpatiaLite Cookbook

SELECT lc1.lc_name AS "Local Council",
 lc2.lc_name AS "Neighour"
FROM local_councils AS lc1,
 local_councils AS lc2
WHERE lc2.ROWID IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(lc1.geometry),
 MbrMinY(lc1.geometry),
 MbrMaxX(lc1.geometry),
 MbrMaxY(lc1.geometry)));

Happily enough, we can perform such Spatial queries in a really fast and efficient way:

we have to use a Spatial Index [aka R*Tree]
this will add some further complexity to the SQL statement, but will achieve a ludicrous speed enhancement.
how it works: the R*Tree is checked first, so to evaluate Minimum Bounding Rectangles [MBRs] of both
Geometries.

This one is a very quick step to be evaluated, and allows discarding lots of couples that surely cannot
share a common boundary.
So the number of times ST_Touches() will then be actually called will be dramatically reduced.
And all this strongly reduces the overall processing time.

At SQL syntax level using the Spatial Index simply requires to implement a sub-query:
the R*Tree Spatial Index in SQLite actually is a separate table.
table names are strictly related: the Spatial Index corresponding to table myTbl and geometry column
myGeom always is expected to be named as idx_myTbl_myGeom.
the MATCH RTreeIntersects() clause is used to quickly retrieve any interesting Geometry simply
evaluating its own MBR.
MbrMinX() and alike are used to identify the extreme points of the filtering MBR.

Just to explain better what's going on, you can imagine that this SQL query is processed using the following steps:

a Geometry is picked up from the first local_councils instance: lc1.geometry
then the R*Tree Spatial Index is scanned, so to identify any other Geometry from the second
local_councils instance: lc2.geometry
Only Geometries satisfying an intersecting MBR constraint will be fetched via Spatial Index.
and finally ST_Touches() will be evaluated: but this will affect only a very limited few carefully pre-filtered
Geometries.

SELECT lc1.lc_name AS "Tuscan Local Council",
 c1.county_name AS "Tuscan County",
 lc2.lc_name AS "Neighbour LC",
 c2.county_name AS County,
 r2.region_name AS Region
FROM local_councils AS lc1,
 local_councils AS lc2,
 counties AS c1,
 counties AS c2,
 regions AS r1,
 regions AS r2
WHERE c1.county_id = lc1.county_id
 AND c2.county_id = lc2.county_id
 AND r1.region_id = c1.region_id
 AND r2.region_id = c2.region_id
 AND r1.region_name LIKE 'toscana'
 AND r1.region_id <> r2.region_id
 AND ST_Touches(lc1.geometry, lc2.geometry)
 AND lc2.ROWID IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(lc1.geometry),
 MbrMinY(lc1.geometry),
 MbrMaxX(lc1.geometry),

SpatiaLite Cookbook

 MbrMaxY(lc1.geometry)))
ORDER BY c1.county_name, lc1.lc_name;

All right, once we have resolved the Spatial Index stuff writing the whole SQL query isn't so difficult.
Anyway this one is a rather complex query, so some further explanation is surely welcome:

we have to resolve JOIN relations connecting local_councils to counties, and counties to regions
anyway we used two different instances for local_councils, so we need to resolve JOIN relations
separately for each one instance.
setting the r1.region_name LIKE 'toscana' clause only Tuscan Local Councils will be evaluated for the
homeland side.
and setting the r1.region_id <> r2.region_id clause ensures that only not-Tuscan Local Councils will be
evaluated for the foreigner side.
only Tuscan Local Councils sharing a common boundary with not-Tuscan Local Councils will be extracted
by this query.

SELECT lc1.lc_name AS "Tuscan Local Council",
 c1.county_name AS "Tuscan County",
 lc2.lc_name AS "Neighbour LC",
 c2.county_name AS County,
 r2.region_name AS Region
FROM local_councils AS lc1,
 local_councils AS lc2
JOIN counties AS c1
 ON (c1.county_id = lc1.county_id)
JOIN counties AS c2
 ON (c2.county_id = lc2.county_id)
JOIN regions AS r1
 ON (r1.region_id = c1.region_id)
JOIN regions AS r2
 ON (r2.region_id = c2.region_id)
WHERE r1.region_name LIKE 'toscana'
 AND r1.region_id <> r2.region_id
 AND ST_Touches(lc1.geometry, lc2.geometry)
 AND lc2.ROWID IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(lc1.geometry),
 MbrMinY(lc1.geometry),
 MbrMaxX(lc1.geometry),
 MbrMaxY(lc1.geometry)))
ORDER BY c1.county_name, lc1.lc_name;

Obviously you can this query adopting the alternative syntax for JOINs: the difference simply is syntactic.
And doesn't implies any difference at functional or performance levels.

Performing sophisticated Spatial Analysis not necessarily is an easy and plain task.
Mastering complex SQL queries is a little bit difficult (but not at all impossible).
Optimizing such complex SQL, so to get fast answers surely requires some extra-care and attention.

But Spatial SQL supports you in the most effective (and flexible) way: the results you can get simply are
fantastic.
After all the game surely is worth the candle.

SpatiaLite Cookbook

Recipe #13
Isolated Islands

2011 January 28

The problem

Very closely related to the latest one. Now the problem is:

identify any isolated Local Council, i.e. each one doesn't sharing a common boundary with any other
Italian Local Councils.

Local Council County Region

CAMPIONE D'ITALIA COMO LOMBARDIA

CAPRAIA ISOLA LIVORNO TOSCANA

CARLOFORTE CAGLIARI SARDEGNA

FAVIGNANA TRAPANI SICILIA

ISOLA DEL GIGLIO GROSSETO TOSCANA

ISOLE TREMITI FOGGIA PUGLIA

LA MADDALENA SASSARI SARDEGNA

LAMPEDUSA E LINOSA AGRIGENTO SICILIA

LIPARI MESSINA SICILIA

PANTELLERIA TRAPANI SICILIA

PONZA LATINA LAZIO

PROCIDA NAPOLI CAMPANIA

USTICA PALERMO SICILIA

VENTOTENE LATINA LAZIO

Please note: quite all the above listed Local Councils are small sea island.
With the remarkable exception of Campione d'Italia, which is a land island:
i.e. a small Italian enclave completely surrounded by Switzerland.

SELECT lc1.lc_name AS "Local Council",
 c.county_name AS County,
 r.region_name AS Region
FROM local_councils AS lc1
JOIN counties AS c ON (
 c.county_id = lc1.county_id)
JOIN regions AS r ON (
 r.region_id = c.region_id)
LEFT JOIN local_councils AS lc2 ON (
 lc1.lc_id <> lc2.lc_id
 AND NOT ST_Disjoint(lc1.geometry, lc2.geometry)
 AND lc2.ROWID IN (

SpatiaLite Cookbook

 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(lc1.geometry),
 MbrMinY(lc1.geometry),
 MbrMaxX(lc1.geometry),
 MbrMaxY(lc1.geometry))))
GROUP BY lc1.lc_id
HAVING Count(lc2.lc_id) = 0
ORDER BY lc1.lc_name;

Nothing really new in this: more or less, this is quite exactly the same we've already examined in the latest
example.
Just few differences are worth to be explained:

this time we've used NOT ST_Disjoint() to identify any allowable Spatial relationship between couples of
adjacent Local Councils.
and we've used LEFT JOIN for the second instance of the local_councils table (AS lc2): this way we'll be
absolutely sure to insert into the result-set every Local Council coming from the left-sided term lc1, because
a LEFT JOIN is valid even when the right-sided term lc2 doesn't matches any corresponding entry.
the GROUP BY lc1.lc_id clause is required so to build a distinct aggregation group for each Local Council.
after all this the function Count(lc2.lc_id) will return the number of neighbours for each Local Council:
quite obviously, a value ZERO denotes that this one actually is an isolated Local Council.
and finally we've used the HAVING clause to exclude any not-isolated Local Council.
Please note well: the HAVING clause must not be confused with the WHERE clause.
They only are apparently similar, but a strong difference exists between them:

WHERE immediately evaluates if a candidate row has to inserted into the result-set or not.
So, a row discarded by WHERE is completely ignored, and cannot be used in any further step.
on the other side HAVING is evaluated only when the result-set is completely defined, just immediately
before be passed back to the calling process.
So HAVING is really useful to perform any kind of post-processing, as in this case.
We simply needed to reduce the result-set (by deleting any not-isolated Local Council), and the
HAVING clause was exactly the tool for the job.

SpatiaLite Cookbook

Recipe #14
Populated Places vs Local

Councils
2011 January 28

The problem

Do you remember ?

We've left the populated_places table in a self-standing position since now.
While designing the DB layout we concluded that some spatial relationship must exists between
populated_places and local_councils.
We can easily expect to get some inconsistencies between these two datasets, because they come from
absolutely unrelated sources.
The populated_places table has POINT Geometries into the 4236 SRID (Geographic, WGS84, long-lat):
whilst the local_councils table has MULTIPOLYGON Geometries into the 23032 SRID (planar, ED50 UTM
zone 32)
Using two different SRIDs surely introduces some further complication to be resolved.

It's now time to confront yourself with this not-so-simple problem.

PopulatedPlaceId PopulatedPlaceName LocalCouncilId LocalCouncilName County Region

...

12383 Acitrezza NULL NULL NULL NULL

12384 Lavinio NULL NULL NULL NULL

11327 Altino 69001 ALTINO CHIETI ABRUZZO

11265 Archi 69002 ARCHI CHIETI ABRUZZO

11247 Ari 69003 ARI CHIETI ABRUZZO

...

SELECT pp.id AS PopulatedPlaceId,
 pp.name AS PopulatedPlaceName,
 lc.lc_id AS LocalCouncilId,
 lc.lc_name AS LocalCouncilName
FROM populated_places AS pp,
 local_councils AS lc
WHERE ST_Contains(lc.geometry,
 Transform(pp.geometry, 23032));

You can start with this first simple query:

the ST_Contains(geom1, geom2) function is used to evaluate the spatial relationship existing between Local
Councils and Populated Places.
there is absolutely nothing strange in this query: you'll simply use a JOIN condition based on a spatial

SpatiaLite Cookbook

relationship.
quite obviously using Transform() is required so to re-project any coordinate into the same SRID.
anyway you are already warned: you are now well conscious that using a so simplistic approach (i.e. not
using the R*Tree Spatial Index) will surely produce a very slowly running query.

SELECT pp.id AS PopulatedPlaceId,
 pp.name AS PopulatedPlaceName,
 lc.lc_id AS LocalCouncilId,
 lc.lc_name AS LocalCouncilName
FROM populated_places AS pp,
 local_councils AS lc
WHERE ST_Contains(lc.geometry,
 Transform(pp.geometry, 23032))
 AND lc.lc_id IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(pp.geometry, 23032)),
 MbrMinY(
 Transform(pp.geometry, 23032)),
 MbrMaxX(
 Transform(pp.geometry, 23032)),
 MbrMaxY(
 Transform(pp.geometry, 23032)));

This further query is exactly the same as the first one: except in that this second version fully exploits the R*Tree
Spatial Index.
Please note: using Transform() several times is absolutely required, so to correctly re-project any coordinate into
an uniform SRID.

Anyway there is still an unresolved issue in the above query: following this way any mismatching Populated Place
will never be identified.
In order to detect if some Populated Place does actually falls outside any corresponding Local Council you
absolutely have to implement a LEFT JOIN.

SELECT pp.id AS PopulatedPlaceId,
 pp.name AS PopulatedPlaceName,
 lc.lc_id AS LocalCouncilId,
 lc.lc_name AS LocalCouncilName,
 c.county_name AS County,
 r.region_name AS Region
FROM populated_places AS pp
LEFT JOIN local_councils AS lc
 ON (ST_Contains(lc.geometry,
 Transform(pp.geometry, 23032))
 AND lc.lc_id IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(pp.geometry, 23032)),
 MbrMinY(
 Transform(pp.geometry, 23032)),
 MbrMaxX(
 Transform(pp.geometry, 23032)),
 MbrMaxY(
 Transform(pp.geometry, 23032)))))
LEFT JOIN counties AS c
 ON (c.county_id = lc.county_id)
LEFT JOIN regions AS r
 ON (r.region_id = c.region_id)
ORDER BY 6, 5, 4;

All right: this one is the final and definitive version.

you've simply added further LEFT JOIN clauses, so to fully qualify each Local Council reporting the
corresponding County and Region.
not at all surprisingly about twenty Populated Places doesn't actually correspond to any Local Council

SpatiaLite Cookbook

(you expected this, because these two datasets come from unrelated sources).
you can duly use QGIS to visually inspect such mismatching entries: and you'll soon discover that in each
case all them are towns placed very closely to sea shore.
And some (slight) misplacement actually exist.

SpatiaLite Cookbook

recipe #15
Tightly bounded Populated

Places
2011 January 28

The problem

Yet another problem based on the populated_places dataset. This time the question is:

Identify any possible couple of Populated Places laying at very close distance: < 1 Km

Please note: this problem hides an unpleasant complication.

the Populated Places dataset is in the 4236 SRID (Geographic, WGS84, long-lat)
accordingly to this, distances are naturally measured in decimal degrees
but the imposed range limit is expressed in meters/Km

PopulatedPlace #1 Distance (meters) PopulatedPlace #2

Vallarsa 49.444299 Raossi

Raossi 49.444299 Vallarsa

Seveso 220.780551 Meda

Meda 220.780551 Seveso

...

SELECT pp1.name AS "PopulatedPlace #1",
 GeodesicLength(
 MakeLine(pp1.geometry, pp2.geometry))
 AS "Distance (meters)",
 pp2.name AS "PopulatedPlace #2"
FROM populated_places AS pp1,
 populated_places AS pp2
WHERE GeodesicLength(
 MakeLine(pp1.geometry, pp2.geometry)) < 1000.0
 AND pp1.id <> pp2.id
 AND pp2.ROWID IN (
 SELECT pkid
 FROM idx_populated_places_geometry
 WHERE pkid MATCH RTreeDistWithin(
 ST_X(pp1.geometry),
 ST_Y(pp1.geometry), 0.02))
ORDER BY 2;

This time we'll go straight forward to final solution.
I suppose that's now very clear to everyone that using a Spatial Index is absolutely required to get a decently well-
performing query.
And that a JOIN between two different instances of the same table is required to perform this kind of Spatial

SpatiaLite Cookbook

Analysis, and so on ...

So we'll simply focus our attention on the most notable highlights:

the MakeLine() function builds a segment connecting two extreme POINT
the GeodesicLength() function calculates the total length (expressed in meters) for any long-lat
LINESTRING.
This function gives very accurate results, because is taken directly on the ellipsoid.
Unhappily, this requires lots of complex calculations, so computing a Geodesic length is intrinsically an
heavy (and slow) process.
Anyway, a savvy usage of the Spatial Index strongly reduces complexity.
using the MATCH RTreeDistWithin() clause allows to make a first distance estimation directly on the Spatial
Index.
Please note: the 0.02 constant means 2/100 of degree (about 2Km, on the Great Circle).
Coordinates into the Spatial Index are long-lat (this is because Populated Places are into the 4326 SRID), so
an angular measure is required here.
defining the pp1.id <> pp2.id clause avoids to evaluate the distance between a Populated Place and itself
(not surprisingly, always exactly equal to0.0)

Performing a Spatial query like this one in the most naive way requires an extremely long time, even if you'll use
the most recent and powerful CPU.
But carefully applying a little bit of optimization is not too much difficult.
And a properly defined an well optimized SQL query surely runs in the smoothest and fastest way.

SpatiaLite Cookbook

Recipe #16
Railways vs Local Councils

2011 January 28

The problem

This time we'll use for the first time the railways dataset.
Please remember: this one is a really small dataset simply representing two railway lines:
this dataset is in the 23032 SRID [ED50 UTM zone 32]. The problem is:

Identify any Local Council crossed by a railway line.

Important notice: you must accomplish a preliminary step.
You are required downloading railways.zip (a very simple shapefile oppurtunely derived from OSM).
And then you have to load such shapefile into the railways table.

Railway LocalCouncil County Region

...

Ferrovia Adriatica SILVI TERAMO ABRUZZO

Ferrovia Adriatica TORTORETO TERAMO ABRUZZO

Ferrovia Roma-Napoli AVERSA CASERTA CAMPANIA

Ferrovia Roma-Napoli CANCELLO ED ARNONE CASERTA CAMPANIA

...

SELECT rw.name AS Railway,
 lc.lc_name AS LocalCouncil,
 c.county_name AS County,
 r.region_name AS Region
FROM railways AS rw
JOIN local_councils AS lc ON (
 ST_Intersects(rw.geometry, lc.geometry)
 AND lc.ROWID IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(rw.geometry),
 MbrMinY(rw.geometry),
 MbrMaxX(rw.geometry),
 MbrMaxY(rw.geometry))))
JOIN counties AS c
 ON (c.county_id = lc.county_id)
JOIN regions AS r
 ON (r.region_id = c.region_id)
ORDER BY r.region_name,
 c.county_name,
 lc.lc_name;

We'll simply examine few interesting key points:

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/railways.zip

SpatiaLite Cookbook

a JOIN clause is used so to retrieve the corresponding County and Region for each Local Council.
You already know how this works, because you had already used this in some previous example.
the most interesting point in this query is in the first JOIN clause:
the ST_Intersects() function is used to evaluate a Spatial relationships between the local_councils and
the railways tables.
Anyway all this isn't at all surprising, because you've already seen something like this in previous examples.
and once again the appropriate R*Tree Spatial Index is used in order to speed up the query.

More or less, this is quite the same thing of the previous example, when we examined Spatial relationships
existing between Local Councils and Populated Places.
Anyway, this confirms that using any possible kind of Spatial relationship is a reasonably easy task, and that you
can successfully use Spatial relationships to resolve lots of different real-world problems.

SpatiaLite Cookbook

Recipe #17
Railways vs Populated Places

2011 January 28

The problem

We'll use once again the railways dataset.
But this really is an hot spiced recipe: be prepared to taste very strong flavors.
As you can now easily image by yourself, computing distances between a railway line and Populated Places isn't
so difficult.
So this problem introduces a further degree of complexity (just to escape from boredom and to keep your mind
active and interested).

Image that for any good reason the following classification exists:
Class Min. distance Max. distance

A-class 0 Km 1 Km

B-class 1 Km 2.5 Km

C-class 2.5 Km 5 Km

D-class 5 Km 10 Km

E-class 10 Km 20 Km
The problem you are faced to resolve is:

identify any Populated Place laying within a distance radius of 20 Km from a Railway.
identify the corresponding distance Class for each one of such Populated Places.

Railway PopulatedPlace A class [<
1Km]

B class [<
2.5Km]

C class [<
5Km]

D class [<
10Km]

E class [<
20Km]

Ferrovia
Adriatica

Zapponeta NULL NULL NULL NULL 1

Ferrovia
Adriatica

Villamagna NULL NULL NULL NULL 1

Ferrovia
Adriatica

Villalfonsina NULL NULL NULL 1 0

Ferrovia
Adriatica

Vasto 1 0 0 0 0

...

SELECT rw.name AS Railway,
 pp_e.name AS PopulatedPlace,
 (ST_Distance(rw.geometry,
 Transform(pp_a.geometry, 23032)) <= 1000.0)
 AS "A class [< 1Km]",

SpatiaLite Cookbook

 (ST_Distance(rw.geometry,
 Transform(pp_b.geometry, 23032)) > 1000.0)
 AS "B class [< 2.5Km]",
 (ST_Distance(rw.geometry,
 Transform(pp_c.geometry, 23032)) > 2500.0)
 AS "C class [< 5Km]",
 (ST_Distance(rw.geometry,
 Transform(pp_d.geometry, 23032)) > 5000.0)
 AS "D class [< 10Km]",
 (ST_Distance(rw.geometry,
 Transform(pp_e.geometry, 23032)) > 10000.0)
 AS "E class [< 20Km]"
FROM railways AS rw
JOIN populated_places AS pp_e ON (
 ST_Distance(rw.geometry,
 Transform(pp_e.geometry, 23032)) <= 20000.0
 AND pp_e.id IN (
 SELECT pkid
 FROM idx_populated_places_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMinY(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMaxX(
 Transform(
 ST_Envelope(rw.geometry), 4236)),
 MbrMaxY(
 Transform(
 ST_Envelope(rw.geometry), 4326)))))
LEFT JOIN populated_places AS pp_d ON (
 pp_e.id = pp_d.id
 AND ST_Distance(rw.geometry,
 Transform(pp_d.geometry, 23032)) <= 10000.0
 AND pp_d.id IN (
 SELECT pkid
 FROM idx_populated_places_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMinY(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMaxX(
 Transform(
 ST_Envelope(rw.geometry), 4236)),
 MbrMaxY(
 Transform(
 ST_Envelope(rw.geometry), 4326)))))
LEFT JOIN populated_places AS pp_c ON (
 pp_d.id = pp_c.id
 AND ST_Distance(rw.geometry,
 Transform(pp_c.geometry, 23032)) <= 5000.0
 AND pp_c.id IN (
 SELECT pkid
 FROM idx_populated_places_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMinY(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMaxX(
 Transform(
 ST_Envelope(rw.geometry), 4236)),
 MbrMaxY(
 Transform(
 ST_Envelope(rw.geometry), 4326)))))
LEFT JOIN populated_places AS pp_b ON (
 pp_c.id = pp_b.id
 AND ST_Distance(rw.geometry,
 Transform(pp_b.geometry, 23032)) <= 2500.0
 AND pp_b.id IN (
 SELECT pkid
 FROM idx_populated_places_geometry

SpatiaLite Cookbook

 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMinY(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMaxX(
 Transform(
 ST_Envelope(rw.geometry), 4236)),
 MbrMaxY(
 Transform(
 ST_Envelope(rw.geometry), 4326)))))
LEFT JOIN populated_places AS pp_a ON (
 pp_b.id = pp_a.id
 AND ST_Distance(rw.geometry,
 Transform(pp_a.geometry, 23032)) <= 1000.0
 AND pp_a.id IN (
 SELECT pkid
 FROM idx_populated_places_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMinY(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMaxX(
 Transform(
 ST_Envelope(rw.geometry), 4236)),
 MbrMaxY(
 Transform(
 ST_Envelope(rw.geometry), 4326)))));

Yes, this one really looks like a complex and intimidating query.
Anyway, complexity is much more apparent than real.
You already know the trick: you simply have to break down this statement into several smallest chunks. And then
you'll soon discover that there isn't nothing really difficult and complex.

Let us examine the main framework:
SELECT rw.name AS Railway, ...
FROM railways AS rw
JOIN populated_places AS pp_e ON (...)
LEFT JOIN populated_places AS pp_d ON (...)
LEFT JOIN populated_places AS pp_c ON (...)
LEFT JOIN populated_places AS pp_b ON (...)
LEFT JOIN populated_places AS pp_a ON (...);

we'll simply JOIN the railways AS rw and the populated_places AS pp_e tables: and there is nothing
strange in this, isn't ?
then we'll LEFT JOIN the populated_places AS pp_d table a second time: and you surely remember that
LEFT JOIN inserts a valid row into the result-set even when the right-sided term evaluates to NULL.
and finally we'll repeat LEFT JOIN for pp_c, pp_b and pp_a.
we'll obviously start by checking the biggest distance, because if this one fails any other comparison will
surely fail as well.
And so on, following the decreasing distance sequence.

...
JOIN populated_places AS pp_e ON (
 ST_Distance(rw.geometry,
 Transform(pp_e.geometry, 23032)) <= 20000.0
...

each JOIN (or LEFT JOIN) simply evaluates the distance intercurring between the Railway line and the
Populated Place, checking if this one falls within the expected threshold for the corresponding Class.
using Transform() is required because the railway is in the 23032 SRID, whilst the populated place is in the
4326 SRID.

... AND pp_e.id IN (
 SELECT pkid

SpatiaLite Cookbook

 FROM idx_populated_places_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMinY(
 Transform(
 ST_Envelope(rw.geometry), 4326)),
 MbrMaxX(
 Transform(
 ST_Envelope(rw.geometry), 4236)),
 MbrMaxY(
 Transform(
 ST_Envelope(rw.geometry), 4326)))
...

using the usual Spatial Index handling stuff is required anyway, so to support fast filtering of Populated
Places geometries.
and obviously we have to apply Transform(), so to reproject the railway geometry into the 4326 SRID (the
one used by Populated Places).
Please note well: applying a coordinate's transformation to a single POINT can be considered a light-weight
op;
but transforming (many and many times …) some complex LINESTRING or POLYGON is much more an heavy-
weight op.
So we'll smartly use ST_Envelope() in order to strongly simplify any geometry requiring transformation.

All right, now the main framework of the complex query is absolutely clear:

the first JOIN will include into the result-set any Populated Place falling within 20 Km from the railway
line.
any other LEFT JOIN will then test decreasing distances, accordingly to the imposed Class boundaries.
and each LEFT JOIN carefully checks if the Populated Place ID is the same of the previous successfully
identified Class, as in: pp_d.id = pp_c.id
each time one such LEFT JOIN will fail, then corresponding NULL-values will be inserted into the result-set.

SELECT rw.name AS Railway,
 pp_e.name AS PopulatedPlace,
 (ST_Distance(rw.geometry,
 Transform(pp_a.geometry, 23032)) <= 1000.0)
 AS "A class [< 1Km]",
...

Just a latest element to be shortly explained:

consider a distance of e.g. 3.8 Km: this requires inclusion in C-class. But this condition satisfies LEFT JOIN
matching criteria for D-class and E-class as well.
we have obviously to perform a further check.
happily SQL is a really smart language. Any selected column to be returned into the result-set may represent
any appropriate arbitrary expression.
and in SQL a logical expression evaluates as:

0 [FALSE]
1 [TRUE]
or NULL, if anyone of the evaluated operands was NULL.

and that's really all.

You can now play by yourself, performing further tests on this query.
i.e you can add some smart ORDER BY or WHERE clause and so on: that's really easy now, isn't ?

SpatiaLite Cookbook

Recipe #18
Railway Zones as Buffers

2011 January 28

The problem

This is like a kind of visual conclusion of the latest exercise. The problem now is:

create an appropriate Map Layer representing A, B, C, D and E-class zones as previously defined.

CREATE TABLE railway_zones (
 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 railway_name TEXT NOT NULL,
 zone_name TEXT NOT NULL);

SELECT AddGeometryColumn('railway_zones', 'geometry',
 23032, 'MULTIPOLYGON', 'XY');

SpatiaLite Cookbook

We'll start creating a new table:

as usual, we'll first create the table, omitting any Geometry column
and we'll then create the Geometry column in a second time, using AddGeometryColumn(); but you already known all this.
placing this new table into the 23032 SRID [ED50 UTM zone 32] is an absolutely obvious choice: after all, the original railways table is
into the same identical SRID
declaring a MULTYPOLYGON Geometry type is less obvious: but we'll see later why this is required.

INSERT INTO railway_zones
 (id, railway_name, zone_name, geometry)
SELECT NULL, name, 'A class [< 1Km]',
 CastToMultiPolygon(
 ST_Buffer(geometry, 1000.0))
FROM railways;

There is very little interest in this INSERT INTO ... SELECT ... statement (again, you already known all this).
Except for the following topic:

we'll use ST_Buffer() to create a POLYGON corresponding to the 1Km A-class zone.
Please note: is not at all easy guessing the exact type of any Geometry created by ST_Buffer();
sometimes this function will create a POLYGON, but other times a MULTYPOLYGON may be created
(this depends on the exact shape of the input line, and obviously the given buffer radius has a strong influence as well).
so, in order to avoid any possible type inconsistency we defined a MULTIPOLYGON Geometry for this table.
and we are now forcing the type by calling the explicit type-casting function CastToMultiPolygon()

INSERT INTO railway_zones
 (id, railway_name, zone_name, geometry)
SELECT NULL, name, 'B class [< 2.5Km]',
 CastToMultiPolygon(
 ST_Difference(
 ST_Buffer(geometry, 2500.0),
 ST_Buffer(geometry, 1000.0)))
FROM railways;

INSERT INTO railway_zones
 (id, railway_name, zone_name, geometry)
SELECT NULL, name, 'C class [< 5Km]',
 CastToMultiPolygon(
 ST_Difference(
 ST_Buffer(geometry, 5000.0),
 ST_Buffer(geometry, 2500.0)))
FROM railways;

INSERT INTO railway_zones
 (id, railway_name, zone_name, geometry)
SELECT NULL, name, 'D class [< 10Km]',
 CastToMultiPolygon(
 ST_Difference(
 ST_Buffer(geometry, 10000.0),
 ST_Buffer(geometry, 5000.0)))
FROM railways;

INSERT INTO railway_zones
 (id, railway_name, zone_name, geometry)
SELECT NULL, name, 'E class [< 20Km]',
 CastToMultiPolygon(
 ST_Difference(
 ST_Buffer(geometry, 20000.0),
 ST_Buffer(geometry, 10000.0)))
FROM railways;

Creating any further zone isn't much more difficult.

we'll simply use ST_Difference() in order to get the appropriate representation:
in other words, we must create an interior hole for each zone, so to exclude any other other zone we've already created.

You can now perform a simple visual check using QGIS. And that's all.

SpatiaLite Cookbook

recipe #19
Merging Local Councils into Counties and

so on ...
2011 January 28

The problem

Local Councils, Counties and Regions follow a well defined order of hierarchy.
For administrative purposes Italy is subdivided into Regions; Regions are subdivided into Counties; and Counties are subdivided into Local
Councils.
Following the appropriate Spatial SQL procedures you can start from Local Councils geometries and then generate corresponding Counties
geometries. And so on ...

Important notice: the ISTAT 2001 census dataset isn't well suited for this task, because it is plagued by several topology inconsistencies.
We'll use instead the latest ISTAT 2010 dataset, presenting a much better quality and consistency.
http://www.istat.it/ambiente/cartografia/comuni2010.zip
http://www.istat.it/ambiente/cartografia/province2010.zip
http://www.istat.it/ambiente/cartografia/regioni2010.zip

You'll start creating a new DB; then using spatialite_gui you'll import the com2010_s shapefile.

http://www.istat.it/ambiente/cartografia/comuni2010.zip
http://www.istat.it/ambiente/cartografia/province2010.zip
http://www.istat.it/ambiente/cartografia/regioni2010.zip

SpatiaLite Cookbook

The next step is the one to load the prov2010_s dataset: yes, this one too actually is a shapefile.
But for your specific purposes you can ignore at all Counties Geometries.
(generating all them by yourself is the specific task assigned to you this time, isn't ?).
You can simply import the corresponding .DBF file, so to import any data but discarding and ignoring at all related Geometries.

Then you can import the Regions .DBF file from reg2010_s. exactly in the same way.

CREATE VIEW local_councils AS
SELECT c.cod_reg AS cod_reg,
 c.cod_pro AS cod_pro,
 c.cod_com AS cod_com,
 c.nome_com AS nome_com,
 p.nome_pro AS nome_pro,
 p.sigla AS sigla,
 r.nome_reg AS nome_reg,
 c.geometry AS geometry
FROM com2010_s AS c
JOIN prov2010_s AS p USING (cod_pro)
JOIN reg2010_s AS r USING(cod_reg);

SELECT * FROM local_councils;

cod_reg cod_pro cod_com nome_com nome_pro sigla nome_reg geometry

1 1 1 Agliè Torino TO PIEMONTE BLOB sz=1117 GEOMETRY

1 1 2 Airasca Torino TO PIEMONTE BLOB sz=1149 GEOMETRY

1 1 3 Ala di Stura Torino TO PIEMONTE BLOB sz=1933 GEOMETRY

...

This will create the local_councils VIEW; this VIEW represents a nicely de-normalized flat table, so to make any subsequent activity absolutely
painless.

CREATE TABLE counties AS
SELECT cod_pro, nome_pro, sigla, cod_reg, nome_reg,
 ST_Union(geometry) AS geometry
FROM local_councils
GROUP BY cod_pro;

SELECT RecoverGeometryColumn('counties', 'geometry',
 23032, 'MULTIPOLYGON', 'XY');

Now you'll create and populate the countries table:

the ST_Union() SQL Spatial function is used to aggregate / merge Geometries.
by defining a GROUP BY cod_pro clause then ST_Union() will work as an aggregate function, thus effectively building the Geometry
representation corresponding to each single County.
please note well: you must absolutely call RecoverGeometryColumn() so to properly register the counties.geometry column into the
geometry_columns metadata table.

SELECT * FROM counties;

cod_pro nome_pro sigla cod_reg nome_reg geometry

SpatiaLite Cookbook

1 Torino TO 1 PIEMONTE BLOB sz=36337 GEOMETRY

2 Vercelli VC 1 PIEMONTE BLOB sz=27357 GEOMETRY

3 Novara NO 1 PIEMONTE BLOB sz=15341 GEOMETRY

...

Just a quick check ...

And then you are ready to display the counties map layer using QGIS.

CREATE TABLE regions (
 cod_reg INTEGER NOT NULL PRIMARY KEY,
 nome_reg TEXT NOT NULL);

SELECT AddGeometryColumn('regions', 'geometry',
 23032, 'MULTIPOLYGON', 'XY');

INSERT INTO regions (cod_reg, nome_reg, geometry)
SELECT cod_reg, nome_reg, ST_Union(geometry)
FROM counties
GROUP BY cod_reg;

Now you'll create and populate the regions table:

as in the previous step you'll use ST_Union() and GROUP BY to aggregate regions Geometries.
please note well: in this example you have explicitly created the regions table, then using AddGeometryColumn() so to create the
regions.geometry column.
And finally you have used INSERT INTO ... (...) SELECT ... in order to populate the table.
The procedure is different, but the final result is exactly the same one as in the previous example.

SpatiaLite Cookbook

SELECT * FROM regions;

cod_reg nome_reg geometry

1 PIEMONTE BLOB sz=75349 GEOMETRY

2 VALLE D'AOSTA/VALLÉE D'AOSTE BLOB sz=18909 GEOMETRY

3 LOMBARDIA BLOB sz=83084 GEOMETRY

...

Just a quick check ...

And then you can display the regions map layer using QGIS.

CREATE TABLE italy AS
SELECT 'Italy' AS country,
 ST_Union(geometry) AS geometry
FROM regions;

SELECT RecoverGeometryColumn('italy', 'geometry',
 23032, 'MULTIPOLYGON', 'XY');

As a final step you can now create the italy table representing the whole Italian Republic international boundaries.

SpatiaLite Cookbook

Then you can display the italy map layer using QGIS … and that's all.

SpatiaLite Cookbook

recipe #20
Spatial Views

2011 January 28

SpatiaLite supports Spatial Views: any properly defined Spatial View can then be used as any other map layer, i.e. can be displayed using
QGIS .

Please note: any SQLite VIEW can only be accessed in read-mode (SELECT);
and obviously such limitation applies to any Spatial View as well (no INSERT, DELETE or UPDATE are supported).

Using the query composer tool
spatialite_gui supports a query composer tool; in this first example we'll use exactly this one.

Step 1: selecting the required tables and columns, and defining the corresponding JOIN condition.
In this first example we'll JOIN the local_councils and the counties tables.

SpatiaLite Cookbook

Step 2: now we'll set an appropriate filter clause;
in this case only local_councils and counties belonging to Tuscany Region (region_id = 9) will be extracted.

Step 3: and finally we'll set an appropriate VIEW name: during this latest phase we'll select the Geometry column corresponding to this VIEW.

SpatiaLite Cookbook

We are now able to display this Spatial View using QGIS (an appropriate thematic rendering was applied so to evidentiate Counties).

Hand-writing your own Spatial VIEW
CREATE VIEW italy AS
SELECT lc.ROWID AS ROWID,
 lc.lc_id AS lc_id,
 lc.lc_name AS lc_name,
 lc.population AS population,
 lc.geometry AS geometry,
 c.county_id AS county_id,
 c.county_name AS county_name,
 c.car_plate_code AS car_plate_code,
 r.region_id AS region_id,
 r.region_name AS region_name
FROM local_councils AS lc
JOIN counties AS c ON (lc.county_id = c.county_id)
JOIN regions AS r ON (c.region_id = r.region_id);

You are not obligatorily compelled to use the query composer tool.
You are absolutely free to define any arbitrary VIEW to be used as a Spatial View.

INSERT INTO views_geometry_columns
 (view_name, view_geometry, view_rowid, f_table_name, f_geometry_column)
 VALUES ('italy', 'geometry', 'ROWID', 'local_councils', 'geometry');

Anyway you must register this VIEW into the views_geometry_columns, so to make it become a real Spatial View.

SELECT * FROM views_geometry_columns;

SpatiaLite Cookbook

view_name view_geometry view_rowid f_table_name f_geometry_column

tuscany geometry ROWID local_councils geometry

italy geometry ROWID local_councils geometry

Just a simple check ...

And finally we can display this Spatial View using QGIS (an appropriate thematic rendering was applied so to evidentiate Regions).

SpatiaLite Cookbook

Fine dining experience: Chez
Dijkstra

2011 January 28

SpatiaLite supports an internal routing module called VirtualNetwork
Starting from an arbitrary network this module allows to identify shortest path connections using simple SQL queries.
The VirtualNetwork module supports sophisticated and highly optimized algorithms, so it's really fast and very efficient
even using huge sized networks.

Network foundations

You cannot assume that any generic road layer corresponds to a network.
A real network must satisfy several specific prerequisites, i.e. it has to be a graph.

Graph theory is a wide and complex branch of mathematics;
if you are interested in this, here you can get some further details:
Graph Theory
Shortest Path Problem
Dijkstra's Algorithm
A* Algorithm

Very shortly explained:

a network is a collection of arcs
each single arc connects two nodes
each arc has an unique direction:
i.e. the arc going from A-node to B-node is not necessarily the same one going from B to A
each arc has a well known cost (e.g. length, travel time, capacity, ...)
both arcs and nodes must expose some explicitly defined unique identifier.
geometries of arcs and nodes must satisfy a strong topological consistency.

Starting from a network aka graph both Dijkstra's and A* algorithms can then identify the shortest path (minimal cost
connection) connecting any arbitrary couple of nodes.

There are several sources distributing network-like data.
One of the most renowned and widely used is OSM [Open Street Map], a completely free worldwide dataset.

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/File:6n-graf.svg

SpatiaLite Cookbook

There are several download sites distributing OSM; just to mention the main ones:

http://www.openstreetmap.org/
http://download.geofabrik.de/osm/
http://downloads.cloudmade.com/

Anyway in the following example we'll download the required OSM dataset from: www.gfoss.it
Most precisely we'll download the TOSCANA.osm.bz2 dataset.

Step 1: you must uncompress the OSM dataset.
This file is compressed using the bzip2 algorithm, widely supported by many open source tools.
e.g. you can use 7-zip to unzip this file. www.7-zip.org

Step 2: any OSM dataset simply is an XML file
(you can open this file using any ordinary text editor at your choice).
SpatiaLite supports a specific CLI tool allowing to load an OSM dataset into a DB: spatialite_osm_net

>spatialite_osm_net -o TOSCANA.osm -d tuscany.sqlite -T tuscany -m
SQLite version: 3.7.4
SpatiaLite version: 2.4.0-RC5
using IN-MEMORY database
Loading OSM nodes ... wait please ...
 Loaded 1642867 OSM nodes
Verifying OSM ways ... wait please ...
 Verified 60893 OSM ways
Disambiguating OSM nodes ... wait please ...
 Found 40 duplicate OSM nodes - fixed !!!
Loading network ARCs ... wait please ...
 Loaded 121373 network ARCs
Dropping temporary table 'osm_tmp_nodes' ... wait please ...
 Dropped table 'osm_tmp_nodes'
Dropping index 'from_to' ... wait please ...
 Dropped index 'from_to'
exporting IN_MEMORY database ... wait please ...
 IN_MEMORY database succesfully exported
VACUUMing the DB ... wait please ...
 All done: OSM graph was succesfully loaded
>

Very briefly explained:

-o TOSCANA.osm selects the input OSM dataset to be loaded.
-d tuscany.sqlite selects the output DB to be created and populated.
-T tuscany will create the Geometry Table storing the OSM dataset
-m an in-memory database will be used, so to perform data import in the shortest time.

SELECT *
FROM tuscany;

id osm_id class node_from node_to name oneway_from_to oneway_to_from length cost geometry

...

2393 8079944 tertiary 659024545 659024546
Via
Cavour

1 1 7.468047 0.537699
BLOB sz=80
GEOMETRY

2394 8079944 tertiary 659024546 156643876
Via
Cavour

1 1 12.009911 0.864714
BLOB sz=96
GEOMETRY

2395 8083989 motorway 31527668 319386487
Autostrada
del Sole

1 0 424.174893 13.882087
BLOB sz=80
GEOMETRY

2396 8083990 motorway 31527665 31527668
Autostrada
del Sole

1 0 130.545183 4.272388
BLOB
sz=112
GEOMETRY

...

Just a quick check:

a single Tuscany table exists into the DB created by spatialite_osm_net
each row in this table corresponds to a single network arc
the nodes connected by each arc are identified by node_from and node_to

http://www.openstreetmap.org/
http://download.geofabrik.de/osm/
http://downloads.cloudmade.com/
http://download.gfoss.it/osm/osm/regioni/
http://www.7-zip.org/

SpatiaLite Cookbook

oneway_from_to and oneway_to_from determine if the arc can be walked in both directions or not.
length is the geometric length of the arc (measured in meters).
cost is the estimated travel time (expressed in seconds).
geometry is the LINESTRING representation corresponding to the arc.

Please note #1: there is no separate representation for nodes, simply because they can be indirectly retrieved starting from the
corresponding arcs.

Please note #2: this one surely is a real network, but in this form cannot yet support routing queries.
A further step is still required, i.e. creating a VirtualNetwork table.

We'll use spatialite_gui to create the VirtualNetwork table.
Anyway the same operation is supported as well by the spatialite_network CLI tool
(and this CLI tool supports an extended diagnostic capability, useful to identify any eventual problem).

SELECT *
FROM tuscany_net
WHERE NodeFrom = 267209305
 AND NodeTo = 267209702;

Algorithm ArcRowid NodeFrom NodeTo Cost Geometry Name

Dijkstra NULL 267209305 267209702 79.253170 BLOB sz=272 GEOMETRY NULL

Dijkstra 11815 267209305 250254381 11.170037 NULL Via Guelfa

Dijkstra 11816 250254381 250254382 8.583739 NULL Via Guelfa

Dijkstra 11817 250254382 250254383 12.465016 NULL Via Guelfa

Dijkstra 16344 250254383 256636073 15.638407 NULL Via Cavour

Dijkstra 67535 256636073 270862435 3.147105 NULL Piazza San Marco

Dijkstra 25104 270862435 271344268 5.175379 NULL Piazza San Marco

Dijkstra 25105 271344268 82591712 3.188657 NULL Piazza San Marco

Dijkstra 11802 82591712 267209666 4.978328 NULL Piazza San Marco

Dijkstra 20773 267209666 267209702 14.906501 NULL Via Giorgio La Pira

SpatiaLite Cookbook

And finally you can now test your first routing query:
you simply have to set the WHERE NodeFrom = ... AND NodeTo = ... clause.
and a result-set representing the shortest path solution will be returned.
the first row of this result-set summarizes the whole path, and contains the corresponding geometry.
any subsequent row represents a single arc to be traversed, following the appropriate sequence, so to go from origin to
destination.

UPDATE tuscany_net SET Algorithm = 'A*';

UPDATE tuscany_net SET Algorithm = 'Dijkstra';

SpatiaLite's VirtualNetwork tables support two alternative algorithms:

Dijkstra's shortest path is a classic routing algorithm, based on thorough mathematical assumptions, and will surely
identify the optimal solution.
A* is an alternative algorithm based on heuristic assumptions:
it is usually faster than Dijkstra's, but under some odd condition may eventually fail, or may return a sub-optimal
solution.
anyway switching from the one to the other is really simple.
using the Dijksta's algorithm is the default selection.

A VirtualNetwork table simply represents a staticized snapshot of the underlying network.
This allows to adopt an highly efficient binary representation (in other words, allows to produce solutions in a very quick
time), but obviously doesn't supports dynamic changes.

Each time the underlying network changes the corresponding VirtualNetwork must be DROPped and then created again, so
to correctly reflect the latest network state.

In many cases this isn't an issue at all: but on some highly dynamic scenario this may be a big annoyance.
Be well conscious of this limitation.

SpatiaLite Cookbook

System level performace hints
2011 January 28

We have examined since now several optimization related topics: but all this mainly was to be intended as
“smartly writing well designed queries”.

Although defining a properly planned SQL query surely represents the main factor to achieve optimal
performances, this isn't enough.
A second level of performance optimization (fine tuning) exist, i.e. the one concerning interactions between the
DBMS and the underlying Operating System / File System.

DB pages / page cache

Any SQLite DB simply is a single monolithic file: any data and related info is stored within this files.
As in many others DBMS, disk space isn't allocated at random, but is properly structured:
the atomic allocation unit is defined as a page, so a DB file simply is a well organized collection of pages.
All pages within the same DB must have the same identical size (typically 1KB i.e. 1024 bytes):

adopting a bigger page size may actually reduce the I/O traffic, but may impose to waste a significant
amount of unused space.
adopting a smaller page size is strongly discouraged, because will surely imply a much more sustained I/O
traffic.
so the default page size of 1KB represents a mean case well fitted for the vast majority of real world
situations.

Reading and writing from disk a single page at each time surely isn't an efficient process;
so SQLite maintains an internal page cache (stored in RAM), supporting fast access to the most often accessed
pages.
Quite intuitively, adopting a bigger page cache can strongly reduce the overall I/O traffic;
and consequently an higher throughput can be achieved.

By default SQLite adopts a very conservative approach, so to require a light-weight memory footprint;
the initial page cache will simply store 2000 pages (corresponding to a total allocation of only 20MB).

But a so small default page cache surely isn't enough to properly support an huge DB, (may be one ranging in
the many-GB size);
this will easily become a real bottleneck, causing very poor global performances.

PRAGMA page_size;

1024

PRAGMA page_count;

31850

PRAGMA freelist_count;

12326

You can use several PRAGMAs to check the page status for the currently connected DB:

SpatiaLite Cookbook

PRAGMA page_size; will report the currently set page size.
PRAGMA page_count; will report the total number of allocated pages.
PRAGMA freelist_count; will report the total number of unused pages.

please note: each time you perform lots of DELETEs or some DROP [TABLE | INDEX] statement, then
several unused pages will be left in the DB.

PRAGMA page_size = 4096;

PRAGMA page_size;

1024

You can call a PRAGMA page_size so to set a different page size
(you must specify a power of two size argument, ranging from 512 to 65536):

anyway, the page size still remains unchanged.
this is because a complete DB reorganization is required in order to make such change to actually
materialize.

VACUUM;

Performing a VACUUM implies the following actions to be performed:

the whole DB will be checked and completely rewritten from scratch.
any structural change (e.g. changing the current page size) will now be applied.
any unused page will be discarded, so the DB will be effectively compacted.
please note: VACUUMing a large DB may require a long time.

PRAGMA page_size;

4096

PRAGMA page_count;

5197

PRAGMA freelist_count;

0

Just a quick check: immediately after performing VACUUM the new page size has been effectively applied, and there
are no unused pages at all.

PRAGMA cache_size;

1000

PRAGMA cache_size = 1000000;

PRAGMA cache_size;

1000000

You can use PRAGMA cache_size in order to query or set the page cache:

please note: the size is measured as the number of pages to be stored into the cache:
so the corresponding memory allocation (in bytes) will be page_size * cache_size
requesting a bigger cache size usually implies better performances.
Anyway carefully consider that:

an exaggeratedly big cache is completely useless: you'll simply waste a lot of precious RAM for
nothing.
when the memory allocation required by the page cache exceed the amount of physically available
RAM, performance will then be catastrophically impaired, because this will actually cause an
enormous I/O traffic due to memory-to-disk swapping.
on 32bit platforms a further limit exist: on such platforms any process cannot allocate more than 4GB

SpatiaLite Cookbook

memory.
But for practical reasons this limit is more likely to be as low as 1.5GB.

Requesting a very generously (but wisely) dimensioned page cache usually will grant a great performance boost,
most notably when you are processing a very large DB.

You can modify other important settings using the appropriate PRAGMAs supported by SQLite:

PRAGMA ignore_check_constraint can be used to query, enable or disable CHECK constraints
(e.g. disabling check constraints is unsafe, but may be required during preliminary data loading).
PRAGMA foreign_key can be used to query, enable or disable FOREIGN KEY constraints
(and this too may be useful or required during preliminary data loading).
PRAGMA journal_mode can be used to query or set fine details about TRANSACTION journaling.

PRAGMA's implementation change from time to time, so you can usefully consult the appropriate SQLite
documentation

http://www.sqlite.org/pragma.html
http://www.sqlite.org/pragma.html

SpatiaLite Cookbook

Importing / Exporting Shapefiles (DBF, TXT ...)
2011 January 28

There are several data formats that are absolutely widespread in the GIS professional world.
All them are open formats (i.e. they are not specifically bounded to any specific proprietary software, they are not patent covered, and they are publicly
documented).

Not at all surprisingly, such formats are universally supported by any GIS-related software, and can be safely used for data interchange purposes between
different platforms and systems.

the ESRI Shapefile format represents the de-facto universal format for GIS data exchange.
the DBF format was introduced in the very early days of personal computing by dBase (the first DBMS-like software to gain universal popularity):
a DBF file is included in every Shapefile but is quite common finding naked DBF files simply used to ship flat tables.
the TXT/CSV format simply identifies any structured text file (usually, tab separated values or comma separated values are the most often found
variants).

SpatiaLite supports all the above formats for import and/or export.

Please note well: other data formats are very popular and widespread. e.g. the following ones:

Microsoft Excel spreadsheets (.xls)
Microsoft Access database (.mdb)
and many, many others.

All them are closed (proprietary) formats.
i.e. some specific proprietary software or operating system is strictly required, there is no publicly available documentation, and/or they are patent covered.
And all this easily explains why SpatiaLite (as many others open source packages) cannot support such closed formats.

Shapefiles
SpatiaLite supports both import and export for Shapefiles:

you can directly access any external Shapefile via SQL as a VirtualShapefile table
you can import any Shapefile into a DB Table:

using spatialite_gui you'll find a Load Shapefile item in the main menu and in the toolbar.
using the spatialite CLI front-end you can use the .loadshp macro
or you can use the spatialite_tool shell command

you can export any Geometry Table as a Shapefile:
using spatialite_gui you'll find an Export As Shapefile item on the context menu corresponding to any Geometry column within the main tree-
view.
using the spatialite CLI front-end you can use the .dumpshp macro
or you can use the spatialite_tool shell command

SpatiaLite Cookbook

spatialite_gui: Shapefile import

spatialite_gui: Shapefile export

> spatialite counties.sqlite
SpatiaLite version ..: 2.4.0-RC5 Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualDbf' [direct DBF access]
 - 'VirtualText' [direct CSV/TXT access]
 - 'VirtualNetwork' [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 version: Rel. 4.7.1, 23 September 2009
GEOS version: 3.3.0-CAPI-1.7.0
SQLite version: 3.7.4
Enter ".help" for instructions
spatialite> .loadshp prov2010_s counties CP1252 23032
the SPATIAL_REF_SYS table already contains some row(s)
========
Loading shapefile at 'prov2010_s' into SQLite table 'counties'

BEGIN;
CREATE TABLE counties (
PK_UID INTEGER PRIMARY KEY AUTOINCREMENT,
"OBJECTID" INTEGER,
"COD_PRO" INTEGER,
"NOME_PRO" TEXT,
"SIGLA" TEXT);
SELECT AddGeometryColumn('counties', 'Geometry', 23032, 'MULTIPOLYGON', 'XY');

SpatiaLite Cookbook

COMMIT;

Inserted 110 rows into 'counties' from SHAPEFILE
========
spatialite> .headers on
spatialite> SELECT * FROM counties LIMIT 5;
PK_UID|OBJECTID|COD_PRO|NOME_PRO|SIGLA|Geometry
1|1|1|Torino|TO|
2|2|2|Vercelli|VC|
3|3|3|Novara|NO|
4|4|4|Cuneo|CN|
5|5|5|Asti|AT|
spatialite>

spatialite CLI front-end: shapefile import

spatialite> .dumpshp counties Geometry exported_counties CP1252
========
Dumping SQLite table 'counties' into shapefile at 'exported_counties'

SELECT * FROM "counties" WHERE GeometryAliasType("Geometry") = 'POLYGON'
OR GeometryAliasType("Geometry") = 'MULTIPOLYGON' OR "Geometry" IS NULL;

Exported 110 rows into SHAPEFILE
========
spatialite> .quit

>

spatialite CLI front-end: shapefile export

> spatialite_tool -i -shp prov2010_s -d db.sqlite -t counties -c CP1252 -s 23032
SQLite version: 3.7.4
SpatiaLite version: 2.4.0-RC5
Inserted 110 rows into 'counties' from 'prov2010_s.shp'

>
spatialite_tool shell command: shapefile import

> spatialite_tool -e -shp exported_counties -d db.sqlite -t counties -g Geometry -c CP1252
SQLite version: 3.7.4
SpatiaLite version: 2.4.0-RC5
Exported 110 rows into 'exported_counties.shp' from 'counties'

>
spatialite_tool shell command: shapefile export

DBF files
SpatiaLite simply supports import for DBF files:

you can directly access any external DBF file via SQL as a VirtualDbf table
you can import any DBF file into a DB Table:

using spatialite_gui you'll find a Load DBF item in the main menu and in the toolbar.
using the spatialite CLI front-end you can use the .loaddbf macro
or you can use the spatialite_tool CLI command

spatialite_gui: DBF import

> spatialite local_councils.sqlite

SpatiaLite Cookbook

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/impexp.html[01/02/2011 21:39:10]

SpatiaLite version ..: 2.4.0-RC5 Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualDbf' [direct DBF access]
 - 'VirtualText' [direct CSV/TXT access]
 - 'VirtualNetwork' [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 version: Rel. 4.7.1, 23 September 2009
GEOS version: 3.3.0-CAPI-1.7.0
SQLite version: 3.7.4
Enter ".help" for instructions
spatialite> .loaddbf com2010_s.dbf local_councils CP1252
========
Loading DBF at 'com2010_s.dbf' into SQLite table 'local_councils'

BEGIN;
CREATE TABLE local_councils (
PK_UID INTEGER PRIMARY KEY AUTOINCREMENT,
"OBJECTID" INTEGER,
"COD_REG" INTEGER,
"COD_PRO" INTEGER,
"COD_COM" INTEGER,
"PRO_COM" INTEGER,
"NOME_COM" TEXT,
"NOME_ITA" TEXT,
"NOME_TED" TEXT);
COMMIT;

Inserted 8094 rows into 'local_councils' from DBF ========
spatialite> .headers on
spatialite> SELECT * FROM local_councils LIMIT 5 OFFSET 5000;
PK_UID|OBJECTID|COD_REG|COD_PRO|COD_COM|PRO_COM|NOME_COM|NOME_ITA|NOME_TED
5001|4958|12|58|54|58054|Manziana|Manziana|
5002|4959|12|58|55|58055|Marano Equo|Marano Equo|
5003|4960|12|58|56|58056|Marcellina|Marcellina|
5004|4961|12|58|57|58057|Marino|Marino|
5005|4962|12|58|58|58058|Mazzano Romano|Mazzano Romano|
spatialite> .quit

>

spatialite CLI front-end: DBF import

> spatialite_tool -i -dbf com2010_s -d db.sqlite -t local_councils -c CP1252
SQLite version: 3.7.4
SpatiaLite version: 2.4.0-RC5
Inserted 8094 rows into 'local_councils' from 'com2010_s.dbf'

>
spatialite_tool shell command: DBF import

TXT/CSV files
SpatiaLite supports both import and export for TXT/CSV files:

you can directly access any external TXT/CSV file via SQL as VirtualText table
you can import any TXT/CSV file into a DB Table:

using spatialite_gui you'll find a Load TXT/CSV item in the main menu and in the toolbar.
you can export any Table as a TXT/CSV file:

using spatialite_gui you'll find an Export As TXT/CSV item on the context menu corresponding to any Table within the main tree-view.

spatialite_gui: TXT/CSV import

SpatiaLite Cookbook

spatialite_gui: TXT/CSV export

Other supported export formats
Using spatialite_gui you can also export your data as:

HTML web pages
PNG images (Geometries only)
PDF documents (Geometries only)
SVG vector graphics (Geometries only)

spatialite_gui: HTML export

SpatiaLite Cookbook

HTML export sample

spatialite_gui: PNG / PDF / SVG export (1)

SpatiaLite Cookbook

spatialite_gui: PNG / PDF / SVG export (2)

SpatiaLite Cookbook

PNG export sample

SpatiaLite Cookbook

PDF export sample

SpatiaLite Cookbook

SVG export sample

SpatiaLite Cookbook

Language bindings: [C/C++, Java,
Python, PHP ...]

2011 January 28

Both SQLite and SpatiaLite are elementary simple are really lightweight.
So both them are obvious candidates when you are a software developer, and your application absolutely requires
a robust and affordable Spatial DBMS support, but you are attempting to keep anything as simple as possible,
possibly avoiding at all any unnecessary complexity.

The best fit development language supporting SQLite and SpatiaLite is obviously C [or its ugly duckling son, the
C++]
(after all, both SQLite and SpatiaLite are completely written in C language).
Using C/C++ you can directly access the wonderful APIs of both SQLite and SpatiaLite, so to get a full and
unconstrained access to any supported feature at the lowest possible level.
And that's not all: using C/C++ you can eventually adopt static linkage, so to embed directly within the
executable itself (and with an incredibly small footprint) a fully self-contained DBMS engine.
And such an approach surely gets rid of any installation related headache.

Anyway you are not at all compelled to necessarily use C/C++
SQLite and SpatiaLite are supported as well by many other languages such as Java, Python, PHP (and probably
many others).

The basic approach

Any language supporting any generic SQLite driver aka connector can fully support SpatiaLite.
SQLite supports dynamic extension loading; and SpatiaLite simply is such an extension.

SELECT load_extension('path_to_extension_library');

Executing the above SQL statement will load any SQLite's extension: this obviously including SpatiaLite.
Anyway, too much often this is true only in theory, but reality is completely different from this.

Let us quickly examine the main issues actually bringing this simple approach to a complete failure:

SQLite is highly configurable; it supports lots and lots of build-time options.
You can completely disable at all the dynamic extension load mechanism, if you think this one could be a
safe option.
Sadly, for many long years this one has been the favorite choice for the vast majority of system packagers.
SQLite is growing very quickly: usually a major update is released every few months.
But many system packagers still continue distributing incredibly obsolete SQLite's versions.
And quite obviously such obsolete versions cannot adequately support SpatiaLite.
Once you are caught in this painful situation (disabled extensions / obsolete SQLite) you cannot do
absolutely nothing.
You simply have to give up forgetting SpatiaLite: at least for now.
Anyway, if this is your actual case, doesn't lose heart: things evolves, and usually tends to evolve in the
right direction.

SpatiaLite Cookbook

Just two years ago very few languages supported SpatiaLite.
Today this isn't any longer true for the most widely used languages (at least, using recently released
versions).

You can usefully read the appropriate section corresponding to your beloved language, so to get started in the
quickest time.
Each section contains a complete sample program, and contains as well any related system configuration hint,
compiler/linker settings and so on:

C / C++
Java / JDBC
Python
PHP

SpatiaLite Cookbook

Language bindings: C/C++
2011 January 28

C/C++ sample program
spatialite_sample.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <float.h>

#ifdef SPATIALITE_AMALGAMATION
 #include <spatialite/sqlite3.h>
#else
 #include <sqlite3.h>
#endif

#ifndef SPATIALITE_EXTENSION
 #include <spatialite.h>
#endif

int
main (void)
{
 sqlite3 *db_handle;
 sqlite3_stmt *stmt;
 int ret;
 char *err_msg = NULL;
 char sql[2048];
 char sql2[1024];
 int i;
 char **results;
 int rows;
 int columns;
 int cnt;
 const char *type;
 int srid;
 char name[1024];
 char geom[2048];

#ifndef SPATIALITE_EXTENSION
 /*
 * initializing SpatiaLite-Amalgamation
 *
 * any C/C++ source requires this to be performed
 * for each connection before invoking the first
 * SQLite/SpatiaLite call
 */
 spatialite_init (0);
 fprintf(stderr, "\n\n******* hard-linked libspatialite ********\n\n");
#endif

/* creating/connecting the test_db */
 ret =
 sqlite3_open_v2 ("test-db.sqlite", &db_handle,
 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, NULL);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "cannot open 'test-db.sqlite': %s\n",
 sqlite3_errmsg (db_handle));
 sqlite3_close (db_handle);
 db_handle = NULL;

SpatiaLite Cookbook

 return -1;
 }

#ifdef SPATIALITE_EXTENSION
 /*
 * loading SpatiaLite as an extension
 */
 sqlite3_enable_load_extension (db_handle, 1);
 strcpy (sql, "SELECT load_extension('libspatialite.so')");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "load_extension() error: %s\n", err_msg);
 sqlite3_free (err_msg);
 return 0;
 }
 fprintf(stderr, "\n\n**** SpatiaLite loaded as an extension ***\n\n");
#endif

/* reporting version infos */
#ifndef SPATIALITE_EXTENSION
/*
* please note well:
* this process is physically linked to libspatialite
* so we can directly call any SpatiaLite's API function
*/
 fprintf (stderr, "SQLite version: %s\n", sqlite3_libversion());
 fprintf (stderr, "SpatiaLite version: %s\n", spatialite_version());
#else
/*
* please note well:
* this process isn't physically linked to libspatialite
* because we loaded the library as an extension
*
* so we aren't enabled to directly call any SpatiaLite's API functions
* we simply can access SpatiaLite indirectly via SQL statements
*/
 strcpy (sql, "SELECT sqlite_version()");
 ret =
 sqlite3_get_table (db_handle, sql, &results, &rows, &columns, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 if (rows < 1)
 {
 fprintf (stderr,
 "Unexpected error: sqlite_version() not found ??????\n");
 goto stop;
 }
 else
 {
 for (i = 1; i <= rows; i++)
 {
 fprintf (stderr, "SQLite version: %s\n",
 results[(i * columns) + 0]);
 }
 }
 sqlite3_free_table (results);
 strcpy (sql, "SELECT spatialite_version()");
 ret =
 sqlite3_get_table (db_handle, sql, &results, &rows, &columns, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 if (rows < 1)
 {
 fprintf (stderr,
 "Unexpected error: spatialite_version() not found ??????\n");
 goto stop;
 }
 else
 {
 for (i = 1; i <= rows; i++)
 {

SpatiaLite Cookbook

 fprintf (stderr, "SpatiaLite version: %s\n",
 results[(i * columns) + 0]);
 }
 }
 sqlite3_free_table (results);
#endif /* SpatiaLite as an extension */

/* initializing SpatiaLite's metadata tables */
 strcpy (sql, "SELECT InitSpatialMetadata()");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "InitSpatialMetadata() error: %s\n", err_msg);
 sqlite3_free (err_msg);
 return 0;
 }

/* creating a POINT table */
 strcpy (sql, "CREATE TABLE test_pt (");
 strcat (sql, "id INTEGER NOT NULL PRIMARY KEY,");
 strcat (sql, "name TEXT NOT NULL)");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
/* creating a POINT Geometry column */
 strcpy (sql, "SELECT AddGeometryColumn('test_pt', ");
 strcat (sql, "'geom', 4326, 'POINT', 'XY')");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }

/* creating a LINESTRING table */
 strcpy (sql, "CREATE TABLE test_ln (");
 strcat (sql, "id INTEGER NOT NULL PRIMARY KEY,");
 strcat (sql, "name TEXT NOT NULL)");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
/* creating a LINESTRING Geometry column */
 strcpy (sql, "SELECT AddGeometryColumn('test_ln', ");
 strcat (sql, "'geom', 4326, 'LINESTRING', 'XY')");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }

/* creating a POLYGON table */
 strcpy (sql, "CREATE TABLE test_pg (");
 strcat (sql, "id INTEGER NOT NULL PRIMARY KEY,");
 strcat (sql, "name TEXT NOT NULL)");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
/* creating a POLYGON Geometry column */
 strcpy (sql, "SELECT AddGeometryColumn('test_pg', ");
 strcat (sql, "'geom', 4326, 'POLYGON', 'XY')");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);

SpatiaLite Cookbook

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/c.html[01/02/2011 21:48:48]

 goto stop;
 }

/*
* inserting some POINTs
* please note well: SQLite is ACID and Transactional
* so (to get best performance) the whole insert cycle
* will be handled as a single TRANSACTION
*/
 ret = sqlite3_exec (db_handle, "BEGIN", NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 for (i = 0; i < 100000; i++)
 {
 /* for POINTs we'll use full text sql statements */
 strcpy (sql, "INSERT INTO test_pt (id, name, geom) VALUES (");
 sprintf (sql2, "%d, 'test POINT #%d'", i + 1, i + 1);
 strcat (sql, sql2);
 sprintf (sql2, ", GeomFromText('POINT(%1.6f %1.6f)'", i / 1000.0,
 i / 1000.0);
 strcat (sql, sql2);
 strcat (sql, ", 4326))");
 ret = sqlite3_exec (db_handle, sql, NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 }
 ret = sqlite3_exec (db_handle, "COMMIT", NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }

/* checking POINTs */
 strcpy (sql, "SELECT DISTINCT Count(*), ST_GeometryType(geom), ");
 strcat (sql, "ST_Srid(geom) FROM test_pt");
 ret =
 sqlite3_get_table (db_handle, sql, &results, &rows, &columns, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 if (rows < 1)
 {
 fprintf (stderr, "Unexpected error: ZERO POINTs found ??????\n");
 goto stop;
 }
 else
 {
 for (i = 1; i <= rows; i++)
 {
 cnt = atoi (results[(i * columns) + 0]);
 type = results[(i * columns) + 1];
 srid = atoi (results[(i * columns) + 2]);
 fprintf (stderr, "Inserted %d entities of type %s SRID=%d\n",
 cnt, type, srid);
 }
 }
 sqlite3_free_table (results);

/*
* inserting some LINESTRINGs
* this time we'll use a Prepared Statement
*/
 strcpy (sql, "INSERT INTO test_ln (id, name, geom) ");
 strcat (sql, "VALUES (?, ?, GeomFromText(?, 4326))");
 ret = sqlite3_prepare_v2 (db_handle, sql, strlen (sql), &stmt, NULL);
 if (ret != SQLITE_OK)
 {

SpatiaLite Cookbook

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/c.html[01/02/2011 21:48:48]

 fprintf (stderr, "SQL error: %s\n%s\n", sql,
 sqlite3_errmsg (db_handle));
 goto stop;
 }
 ret = sqlite3_exec (db_handle, "BEGIN", NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 for (i = 0; i < 100000; i++)
 {
 /* setting up values / binding */
 sprintf (name, "test LINESTRING #%d", i + 1);
 strcpy (geom, "LINESTRING(");
 if ((i % 2) == 1)
 {
 /* odd row: five points */
 strcat (geom, "-180.0 -90.0, ");
 sprintf (sql2, "%1.6f %1.6f, ", -10.0 - (i / 1000.0),
 -10.0 - (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f, ", -10.0 - (i / 1000.0),
 10.0 + (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f, ", 10.0 + (i / 1000.0),
 10.0 + (i / 1000.0));
 strcat (geom, sql2);
 strcat (geom, "180.0 90.0");
 }
 else
 {
 /* even row: two points */
 sprintf (sql2, "%1.6f %1.6f, ", -10.0 - (i / 1000.0),
 -10.0 - (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f, ", 10.0 + (i / 1000.0),
 10.0 + (i / 1000.0));
 strcat (geom, sql2);
 }
 strcat (geom, ")");
 sqlite3_reset (stmt);
 sqlite3_clear_bindings (stmt);
 sqlite3_bind_int (stmt, 1, i + 1);
 sqlite3_bind_text (stmt, 2, name, strlen (name), SQLITE_STATIC);
 sqlite3_bind_text (stmt, 3, geom, strlen (geom), SQLITE_STATIC);
 /* performing INSERT INTO */
 ret = sqlite3_step (stmt);
 if (ret == SQLITE_DONE || ret == SQLITE_ROW)
 continue;
 fprintf (stderr, "sqlite3_step() error: [%s]\n",
 sqlite3_errmsg (db_handle));
 goto stop;
 }
 sqlite3_finalize (stmt);
 ret = sqlite3_exec (db_handle, "COMMIT", NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }

/* checking LINESTRINGs */
 strcpy (sql, "SELECT DISTINCT Count(*), ST_GeometryType(geom), ");
 strcat (sql, "ST_Srid(geom) FROM test_ln");
 ret =
 sqlite3_get_table (db_handle, sql, &results, &rows, &columns, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 if (rows < 1)
 {
 fprintf (stderr, "Unexpected error: ZERO LINESTRINGs found ??????\n");
 goto stop;
 }

SpatiaLite Cookbook

 else
 {
 for (i = 1; i <= rows; i++)
 {
 cnt = atoi (results[(i * columns) + 0]);
 type = results[(i * columns) + 1];
 srid = atoi (results[(i * columns) + 2]);
 fprintf (stderr, "Inserted %d entities of type %s SRID=%d\n",
 cnt, type, srid);
 }
 }
 sqlite3_free_table (results);

/*
* inserting some POLYGONs
* this time too we'll use a Prepared Statement
*/
 strcpy (sql, "INSERT INTO test_pg (id, name, geom) ");
 strcat (sql, "VALUES (?, ?, GeomFromText(?, 4326))");
 ret = sqlite3_prepare_v2 (db_handle, sql, strlen (sql), &stmt, NULL);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "SQL error: %s\n%s\n", sql,
 sqlite3_errmsg (db_handle));
 goto stop;
 }
 ret = sqlite3_exec (db_handle, "BEGIN", NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 for (i = 0; i < 100000; i++)
 {
 /* setting up values / binding */
 sprintf (name, "test POLYGON #%d", i + 1);
 strcpy (geom, "POLYGON((");
 sprintf (sql2, "%1.6f %1.6f, ", -10.0 - (i / 1000.0),
 -10.0 - (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f, ", 10.0 - (i / 1000.0),
 -10.0 - (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f, ", 10.0 + (i / 1000.0),
 10.0 + (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f, ", -10.0 - (i / 1000.0),
 10.0 - (i / 1000.0));
 strcat (geom, sql2);
 sprintf (sql2, "%1.6f %1.6f", -10.0 - (i / 1000.0),
 -10.0 - (i / 1000.0));
 strcat (geom, sql2);
 strcat (geom, "))");
 sqlite3_reset (stmt);
 sqlite3_clear_bindings (stmt);
 sqlite3_bind_int (stmt, 1, i + 1);
 sqlite3_bind_text (stmt, 2, name, strlen (name), SQLITE_STATIC);
 sqlite3_bind_text (stmt, 3, geom, strlen (geom), SQLITE_STATIC);
 /* performing INSERT INTO */
 ret = sqlite3_step (stmt);
 if (ret == SQLITE_DONE || ret == SQLITE_ROW)
 continue;
 fprintf (stderr, "sqlite3_step() error: [%s]\n",
 sqlite3_errmsg (db_handle));
 goto stop;
 }
 sqlite3_finalize (stmt);
 ret = sqlite3_exec (db_handle, "COMMIT", NULL, NULL, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }

/* checking POLYGONs */
 strcpy (sql, "SELECT DISTINCT Count(*), ST_GeometryType(geom), ");
 strcat (sql, "ST_Srid(geom) FROM test_pg");
 ret =

SpatiaLite Cookbook

 sqlite3_get_table (db_handle, sql, &results, &rows, &columns, &err_msg);
 if (ret != SQLITE_OK)
 {
 fprintf (stderr, "Error: %s\n", err_msg);
 sqlite3_free (err_msg);
 goto stop;
 }
 if (rows < 1)
 {
 fprintf (stderr, "Unexpected error: ZERO POLYGONs found ??????\n");
 goto stop;
 }
 else
 {
 for (i = 1; i <= rows; i++)
 {
 cnt = atoi (results[(i * columns) + 0]);
 type = results[(i * columns) + 1];
 srid = atoi (results[(i * columns) + 2]);
 fprintf (stderr, "Inserted %d entities of type %s SRID=%d\n",
 cnt, type, srid);
 }
 }
 sqlite3_free_table (results);

/* closing the DB connection */
 stop:
 sqlite3_close (db_handle);
 return 0;
}

Compiling and linking

SpatiaLite comes in different flavors:

libspatialite is the standard library intended to be loaded as an extension.
libspatialite-amalgamation is a self-standing complete SQL-engine supporting an internal private
copy of SQLite.

If your principal interest is developing easy-to-be-deployed, stand-alone C/C++ applications, then using the
statically linked libspatialite-amalgamation will surely be a desirable option.
Anyway nothing prevents you from using a different layout based on dynamically linked shared libraries.
And a third option is supported as well: you can completely avoid using SQLite and SpatiaLite libraries.
Both them simply are one single monolithic source file: so you can directly compile any required source in a
single pass (this will obviously generate a statically linked executable).

Get a quick glance to the spatialite_sample.c source code; you easily notice that two conditional macros are
extensively used:

SPATIALITE_AMALGAMATION is used to determine if we are using separate libsqlite and libspatialite,
or if we are using the all-in-one libspatialite-amalgamation

as you can notice the only difference affects inclusion of header files:
when using amalgamation you cannot use #include <sqlite3.h> (because this one is the standard
system sqlite header file).
you are required using #include <spatialite/sqlite3.h> (a purposely modified version
supporting amalgamation).

SPATIALITE_EXTENSION is used to determine if we are using an hard-linked libspatialite or if we intend
loading this library as an extension:

please note: loading libspatialite as an extension excludes using the amalgamation, because
libsqlite is already linked to the executable in this case.

You can now build spatialite_sample.c in many different flavors, simply defining these two macros as

SpatiaLite Cookbook

appropriate, in the most flexible way.
The following practical examples are based on the standard GNU gcc compiler on Linux.

Loading SpatiaLite as an extension
gcc -Wall -Wextra -Wunused -DSPATIALITE_EXTENSION \
 spatialite_sample.c -o spatialite_sample -lsqlite3

Some interesting points to be noted:

you must not explicitly link libspatialite;
this is because we'll dynamically load this library only at run-time.
the standard system libsqlite will be used in this case.
please note #1: this approach strongly simplifies compile and link phases, but simply postpones the problem
until run-time.
And obviously a main failure will surely arise if (for any reason) the extension library cannot be actually
loaded.
please note #2: adopting this approach your executable cannot directly access any SpatiaLite's own function,
because no libspatialite was hard-linked;
and consequently any export symbol defined into this library is actually invisible to the executable code.
Anyway, you can safely invoke any function exposed via SQL language, once libsqlite has successfully
loaded the extension library.

This basic approach is exactely the same supported by any other language binding (Java, Python, PHP ...).
But using C/C++ you get get more flexible configuration options: please, see the following examples.

Dynamically linking libspatialite + libsqlite
gcc -Wall -Wextra -Wunused -I/usr/local/include \
 spatialite_sample.c -o spatialite_sample
 -L/usr/local/lib -lspatialite -lsqlite3

Some interesting points to be noted:

this time we'll hard-link libspatialite to our executable.
we'll not use amalgamation, so neither -DSPATIALITE_AMALGAMATION nor -DSPATIALITE_EXTENSION have
to be declared this time.
usually libspatialite is installed on the /usr/local directory:
so we'll set -I and -L options in order to extend the searching rules for header files and libraries.
please note: this time we'll link both libspatialite and libsqlite

Dynamically linking libspatialite-amalgamation
gcc -Wall -Wextra -Wunused -DSPATIALITE_AMALGAMATION \
 -I/usr/local/include spatialite_sample.c \

SpatiaLite Cookbook

 -o spatialite_sample \
 -L/usr/local/lib -lspatialite

Some interesting points to be noted:

this time we'll use libspatialite-amalgamation
and accordingly to this, we'll define -DSPATIALITE_AMALGAMATION
as in the previous example we'll set -I and -L options in order to extend the searching rules for header files
and libraries.
please note: this time will simply link libspatialite;
there is absolutely no need to link libsqlite as well, because we'll use the private internal copy directly
included within libspatialite-amalgamation

Statically linking libspatialite + libsqlite
gcc -Wall -Wextra -Wunused -I/usr/local/include \
 spatialite_sample.c -o spatialite_sample \
 /usr/local/lib/libspatialite.a \
 /usr/lib/libsqlite.a \
 /usr/lib/libgeos_c.a \
 /usr/lib/libgeos.a \
 /usr/lib/libproj.a \
 -lstdc++ -ldl -lpthread -lm

Some interesting points to be noted:

adopting a statically linked strategy we are consequently required to resolve any symbol at link time.
So we have to explicitly refer several further libraries:

libproj, libgeos_c and libgeos are always required.
-lstdc++ is required as well, because libgeos actually is a C++ library, thus requiring the C++ run-
time support.
on Linux -ldl and -lpthread are strictly required.
on some Linux declaring -lm may be required as well (and is always harmless, even when not strictly
required).

Statically linking libspatialite-amalgamation
gcc -Wall -Wextra -Wunused -DSPATIALITE_AMALGAMATION \
 -I/usr/local/include spatialite_sample.c \
 -o spatialite_sample \
 /usr/local/lib/libspatialite.a \
 /usr/lib/libgeos_c.a \
 /usr/lib/libgeos.a \
 /usr/lib/libproj.a \
 -lstdc++ -ldl -lpthread -lm

Exactly the same as above; simply this time libsqlite is no longer required, because this is directly supported by
the private internal copy included within the amalgamation itself.

Please note: different platforms, different system libraries, different file system layouts.
The gcc compiler is available on quite every platform (this including Microsoft Windows, of course).
Unhappily, each platform has its own specific idiosyncrasies.

MacOsX:

SpatiaLite Cookbook

gcc -Wall -Wextra -Wunused -DSPATIALITE_AMALGAMATION \
 -I/usr/local/include -I/opt/local/include
 spatialite_sample.c -o spatialite_sample \
 /usr/local/lib/libspatialite.a \
 /opt/local/lib/libgeos_c.a \
 /opt/local/lib/libgeos.a \
 /opt/local/lib/libproj.a \
 /opt/local/lib/libiconv.a \
 /opt/local/lib/libcharset.a \
 -lstdc++ -ldl -lpthread -lm

MacOsX basically is an Unix derivative (most precisely a FreeBSD derivative).
The wonderful MacPorts fully supports standard open source libraries (in our case libgeos, libproj and
libiconv):

MacPorts header files will be installed on /opt/local/include
MacPorts libraries will be installed on /opt/local/lib
Both libiconv and libcharset are directly integrated within the C run-time on Linux.
But on MacOsX you are required to explicitly link these libraries.

Windows [MinGW + MSYS]:
gcc -Wall -Wextra -Wunused -DSPATIALITE_AMALGAMATION \
 -I/usr/local/include spatialite_sample.c \
 -o spatialite_sample.exe \
 /usr/local/lib/libspatialite.a \
 /usr/lib/libgeos_c.a \
 /usr/lib/libgeos.a \
 /usr/lib/libproj.a \
 /usr/local/lib/libiconv.a \
 -lstdc++ -lm

Windows and Unix are strongly different:

as we have already seen for MacOsX explicitly linking libiconv is required for Windows as well (but not
libcharset).
-ldl and -lpthread aren't required at all
(simply because Windows dynamic loader and multithreading are completely different from the
corresponding Unix implementations, and are directly supported by the WIN32 run-time).

Simplest approach: no libs at all ...
gcc -Wall -Wextra -Wunused -DSPATIALITE_AMALGAMATION \
 -DOMIT_GEOS=1 -DOMIT_PROJ=1 -DOMIT_ICONV=1 \
 -DOMIT_GEOCALLBACKS=1 \
 -I./headers -I/usr/local/include \
 spatialite.c sqlite3.c spatialite_sample.c \
 -o spatialite_sample.exe

And finally a third way exists, one allowing to directly embed a complete Spatial SQL engine in the simplest and
absolutely painless way.
[I suppose following this latest approach you can be actually able to get a minimal SpatiaLite support even on
PDA or smart-phones]
Just few explanations:

you must create a new directory.
copy the spatialite_sample.c source into this directory.
then copy into the same directory the sqlite3.c and spatialite.c sources
(they are included in any source distribution of libspatialite-amalgamation).
and finally you must copy the whole headers directory from libspatialite-amalgmationsources.

http://www.macports.org/

SpatiaLite Cookbook

All right, you are now ready to build all-together your statically linked executable.
Please note, absolutely no external libraries are required:

this build is based on libspatialite-amalgamation, so we'll define -DSPATIALITE_AMALGAMATION
by defining -DOMIT_GEOS=1 (and so on) we'll completely disable GEOS, PROJ.4 and ICONV support.
but this will avoid at all linking any further library.
yes, that's true, now SpatiaLite is severely gilded:
but the main-core of Spatial SQL is preserved untouched.
And that's more than enough for many and many practical purposes.

SpatiaLite Cookbook

Language bindings: Java / JDBC
2011 January 28

Test environment
Linux Debian:
just to be sure to test the up-to-date state-of-the-art I've actually used Debian Squeeze (32 bit).
This way I'm sure that all required packages are reasonably using the most recent version.

Java:
I was really curious about OpenJava (I had never used it before), so I decided not to use Sun Java.
After the first initial troubles I discovered I had to install the following packages:

openjdk-6-jre (Java JDK)
gcj (Java compiler)

SQLite's JDBC connector:
I used the one from http://www.xerial.org/trac/Xerial/wiki/SQLiteJDBC
I've actually downloaded the latest supported version:
http://www.xerial.org/maven/repository/artifact/org/xerial/sqlite-jdbc/3.7.2/sqlite-jdbc-3.7.2.jar
Btw this one isn't the latest version supported by SQLite, because v.3.7.3 was released on 2010 October 8, and
v.3.7.4 is available since 2010 December 8: so the Xerial support seems to be slightly outdated. Not a big issue,
anyway.

My first test
Just to check if my environment was a valid one at first I simply compiled and then ran the standard Xerial demo.
You'll easily find the code on their main HTML page about JDBC.
I simply copied the Java code from the HTML page into a text file named Sample.java

Important notice: following Xerial instructions I simply copied the sqlite-jdbc-3.7.2.jar file directly under the
same directory where I placed the Sample.java source, so to avoid any CLASSPATH related headache.

$ javac Sample.java
$ java -classpath ".:sqlite-jdbc.3.7.2.jar" Sample

All right: everything worked as expected. Anyway this first test simply stressed basic SQLite capabilities.
I had now going further on, attempting to test if the Xerial JDBC connector could actually support SpatiaLite.

First SpatiaLite test (failure)
The most recent libspatialite-2.4.0-RC4 was already installed on my test platform (actually this is one of the
Linux workhorses I currently use for development and testing).
I had built this package by myself, so the corresponding shared library was /usr/local/lib/libspatialite.so

http://www.xerial.org/trac/Xerial/wiki/SQLiteJDBC
http://www.xerial.org/maven/repository/artifact/org/xerial/sqlite-jdbc/3.7.2/sqlite-jdbc-3.7.2.jar

SpatiaLite Cookbook

The first obvious thing to be done was loading the SpatiaLite's shared library, so to enable the JDBC connector
supporting SpatiaLite.
So I simply added the following line to the souce code (immediately after establishing the connection).

stmt.execute("SELECT load_extension('/usr/local/lib/libspatialite.so');

Too much simplistic: this way I've got a discouraging error message: NOT AUTHORIZED.
After a little while I've found an useful suggestion browsing the Web: a preliminary step is absolutely required in
order to enable extension dynamic loading.

import org.sqlite.SQLiteConfig;
...
SQLiteConfig config = new SQLiteConfig;
config.enableLoadExtension(true);
Connection conn = DriverManager.getConnection("path", config.toProperties);
Statement stmt = conn.createStatement();
stmt.execute("SELECT load_extension('/usr/local/lib/libspatialite.so')");

All right; now the SpatiaLite's shared library was successfully loaded.
And this one was the unique misadventure I experienced during my JDBC testing: once I was able resolving this
issue then anything ran absolutely smooth and without any further accident.
Except for one JDBC oddity I noticed: but I'll account for this at the end of the story.

Java sample program
SpatialiteSample.java
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.PreparedStatement;
import org.sqlite.SQLiteConfig;

public class SpatialiteSample
{
 public static void main(String[] args) throws ClassNotFoundException
 {
 // load the sqlite-JDBC driver using the current class loader
 Class.forName("org.sqlite.JDBC");

 Connection conn = null;
 try
 {
 // enabling dynamic extension loading
 // absolutely required by SpatiaLite
 SQLiteConfig config = new SQLiteConfig();
 config.enableLoadExtension(true);

 // create a database connection
 conn = DriverManager.getConnection("jdbc:sqlite:spatialite.sample",
 config.toProperties());
 Statement stmt = conn.createStatement();
 stmt.setQueryTimeout(30); // set timeout to 30 sec.

 // loading SpatiaLite
 stmt.execute("SELECT load_extension('/usr/local/lib/libspatialite.so')");

 // enabling Spatial Metadata
 // using v.2.4.0 this automatically initializes SPATIAL_REF_SYS and GEOMETRY_COLUMNS
 String sql = "SELECT InitSpatialMetadata()";
 stmt.execute(sql);

 // creating a POINT table
 sql = "CREATE TABLE test_pt (";
 sql += "id INTEGER NOT NULL PRIMARY KEY,";
 sql += "name TEXT NOT NULL)";
 stmt.execute(sql);
 // creating a POINT Geometry column
 sql = "SELECT AddGeometryColumn('test_pt', ";
 sql += "'geom', 4326, 'POINT', 'XY')";
 stmt.execute(sql);

 // creating a LINESTRING table
 sql = "CREATE TABLE test_ln (";
 sql += "id INTEGER NOT NULL PRIMARY KEY,";
 sql += "name TEXT NOT NULL)";
 stmt.execute(sql);
 // creating a LINESTRING Geometry column
 sql = "SELECT AddGeometryColumn('test_ln', ";
 sql += "'geom', 4326, 'LINESTRING', 'XY')";
 stmt.execute(sql);

 // creating a POLYGON table
 sql = "CREATE TABLE test_pg (";
 sql += "id INTEGER NOT NULL PRIMARY KEY,";
 sql += "name TEXT NOT NULL)";
 stmt.execute(sql);
 // creating a POLYGON Geometry column
 sql = "SELECT AddGeometryColumn('test_pg', ";
 sql += "'geom', 4326, 'POLYGON', 'XY')";

SpatiaLite Cookbook

 stmt.execute(sql);

 // inserting some POINTs
 // please note well: SQLite is ACID and Transactional,
 // so (to get best performance) the whole insert cycle
 // will be handled as a single TRANSACTION
 conn.setAutoCommit(false);
 int i;
 for (i = 0; i < 100000; i++)
 {
 // for POINTs we'll use full text sql statements
 sql = "INSERT INTO test_pt (id, name, geom) VALUES (";
 sql += i + 1;
 sql += ", 'test POINT #";
 sql += i + 1;
 sql += "', GeomFromText('POINT(";
 sql += i / 1000.0;
 sql += " ";
 sql += i / 1000.0;
 sql += ")', 4326))";
 stmt.executeUpdate(sql);
 }
 conn.commit();

 // checking POINTs
 sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), ";
 sql += "ST_Srid(geom) FROM test_pt";
 ResultSet rs = stmt.executeQuery(sql);
 while(rs.next())
 {
 // read the result set
 String msg = "> Inserted ";
 msg += rs.getInt(1);
 msg += " entities of type ";
 msg += rs.getString(2);
 msg += " SRID=";
 msg += rs.getInt(3);
 System.out.println(msg);
 }

 // inserting some LINESTRINGs
 // this time we'll use a Prepared Statement
 sql = "INSERT INTO test_ln (id, name, geom) ";
 sql += "VALUES (?, ?, GeomFromText(?, 4326))";
 PreparedStatement ins_stmt = conn.prepareStatement(sql);
 conn.setAutoCommit(false);
 for (i = 0; i < 100000; i++)
 {
 // setting up values / binding
 String name = "test LINESTRING #";
 name += i + 1;
 String geom = "LINESTRING (";
 if ((i%2) == 1)
 {
 // odd row: five points
 geom += "-180.0 -90.0, ";
 geom += -10.0 - (i / 1000.0);
 geom += " ";
 geom += -10.0 - (i / 1000.0);
 geom += ", ";
 geom += -10.0 - (i / 1000.0);
 geom += " ";
 geom += 10.0 + (i / 1000.0);
 geom += ", ";
 geom += 10.0 + (i / 1000.0);
 geom += " ";
 geom += 10.0 + (i / 1000.0);
 geom += ", 180.0 90.0";
 }
 else
 {
 // even row: two points
 geom += -10.0 - (i / 1000.0);
 geom += " ";
 geom += -10.0 - (i / 1000.0);
 geom += ", ";
 geom += 10.0 + (i / 1000.0);
 geom += " ";
 geom += 10.0 + (i / 1000.0);
 }
 geom += ")";
 ins_stmt.setInt(1, i+1);
 ins_stmt.setString(2, name);
 ins_stmt.setString(3, geom);
 ins_stmt.executeUpdate();
 }
 conn.commit();

 // checking LINESTRINGs
 sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), ";
 sql += "ST_Srid(geom) FROM test_ln";
 rs = stmt.executeQuery(sql);
 while(rs.next())
 {
 // read the result set
 String msg = "> Inserted ";
 msg += rs.getInt(1);
 msg += " entities of type ";
 msg += rs.getString(2);
 msg += " SRID=";
 msg += rs.getInt(3);
 System.out.println(msg);
 }

 // inserting some POLYGONs
 // this time too we'll use a Prepared Statement
 sql = "INSERT INTO test_pg (id, name, geom) ";
 sql += "VALUES (?, ?, GeomFromText(?, 4326))";
 ins_stmt = conn.prepareStatement(sql);
 conn.setAutoCommit(false);
 for (i = 0; i < 100000; i++)
 {
 // setting up values / binding
 String name = "test POLYGON #";
 name += i + 1;

SpatiaLite Cookbook

 ins_stmt.setInt(1, i+1);
 ins_stmt.setString(2, name);
 String geom = "POLYGON((";
 geom += -10.0 - (i / 1000.0);
 geom += " ";
 geom += -10.0 - (i / 1000.0);
 geom += ", ";
 geom += 10.0 + (i / 1000.0);
 geom += " ";
 geom += -10.0 - (i / 1000.0);
 geom += ", ";
 geom += 10.0 + (i / 1000.0);
 geom += " ";
 geom += 10.0 + (i / 1000.0);
 geom += ", ";
 geom += -10.0 - (i / 1000.0);
 geom += " ";
 geom += 10.0 + (i / 1000.0);
 geom += ", ";
 geom += -10.0 - (i / 1000.0);
 geom += " ";
 geom += -10.0 - (i / 1000.0);
 geom += "))";
 ins_stmt.setInt(1, i+1);
 ins_stmt.setString(2, name);
 ins_stmt.setString(3, geom);
 ins_stmt.executeUpdate();
 }
 conn.commit();

 // checking POLYGONs
 sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), ";
 sql += "ST_Srid(geom) FROM test_pg";
 rs = stmt.executeQuery(sql);
 while(rs.next())
 {
 // read the result set
 String msg = "> Inserted ";
 msg += rs.getInt(1);
 msg += " entities of type ";
 msg += rs.getString(2);
 msg += " SRID=";
 msg += rs.getInt(3);
 System.out.println(msg);
 }
 }
 catch(SQLException e)
 {
 // if the error message is "out of memory",
 // it probably means no database file is found
 System.err.println(e.getMessage());
 }
 finally
 {
 try
 {
 if(conn != null)
 conn.close();
 }
 catch(SQLException e)
 {
 // connection close failed.
 System.err.println(e);
 }
 }
 }
}

$ javac -classpath ".:sqlite-jdbc.3.7.2.jar" SpatialiteSample.java
$ java -classpath ".:sqlite-jdbc.3.7.2.jar" SpatialiteSample

Telling the full story is boring and very few interesting: you can study and test the sample code by yourself, and
that's absolutely all.

Conclusions

1. the Xerial JDBC connector seems to be perfectly aimed to support SpatiaLite
2. performance is really good: more or less, exactly the same you can get using a C-based process.

But that's not too much surprising after all: using the Xerial JDBC connector we are actually using binary
C libraries, and Java merely acts like a wrapping shell.

Caveat

Although the Xerial JDBC connector seems to be really good, I noticed several potential flaws.
Very shortly said, your SQL statements have to be absolutely clean and well tested: because when the JDBC
connector encounters some invalid SQL (not at all an exceptional condition during the development life-cycle),

SpatiaLite Cookbook

it's most probable you'll then get a fatal JVM crash than a soft error exception.

I became quite crazy attempting to identify the cause for so frequent crashes during my tests: untill I finally
realized that the problem simply was some stupid missing braket or quotation mark in complex SQL statements.
C can safely survive to all this without any damage, nicely reporting a soft and polite error message.
On the other side JDBC / JVM are unexorably unforgiving (and unstable) when they handle such trivial errors.

JDBC oddities
As I previously stated, I noticed a real JDBC oddity. It's now time to explain better this stupid issue.

C language snippet / SQLite API
strcpy(sql, "INSERT INTO xxx (id, geometry) VALUES (?, ");
strcat(sql, "GeomFromText('POINT(? ?, ? ?)', 4326))";
sqlite3_prepare_v2 (db_handle, sql, strlen (sql), &stmt, NULL);
sqlite3_bind_int (stmt, 0, 1);
sqlite3_bind_double (stmt, 1, 10.01);
sqlite3_bind_double (stmt, 2, 20.02);
sqlite3_bind_double (stmt, 3, 30.03);
sqlite3_bind_double (stmt, 4, 40.04);
sqlite3_step (stmt);

we'll use a Prepared Statement to perform an INSERT INTO
the first argument corresponds to the ID column
any other argument corresponds to POINT coords
all this runs absolutely smooth, because SQLite simply applies values substitution according to coded
instructions.
If you (as a developer) define some mismatching data-type, you'll then get some SQL error.
This sound nice and fine: after all the developer has full authority (and responsibility ...)

Java language snippet / JDBC
sql = "INSERT INTO xxx (id, geometry) VALUES (?, ";
sql += "GeomFromText('POINT(? ?, ? ?)', 4326))";
stmt = conn.prepareStatement(sql);
stmt.setInt(1, 1);
stmt.setDouble(2, 10.01);
stmt.setDouble(3, 20.02);
stmt.setDouble(4, 30.03);
stmt.setDouble(5, 40.04);
stmt.executeUpdate();

oops … this will fail on Java: we'll get a rather mysterious array-out-of-bounds fatal exception

Post-mortem: JDBC attempts to be smarter than you. While parsing the Prepared Statement JDBC discovers your
dirty trick: the latest four args are enclosed within single quotes, so JDBC simply ignores them at all, because it
intends the string literal as an absolutely untouchable entity.
You can check by yourself using ParameterMetaData.getParameterCount(); this prepared statement simply
expects a single arg to be bounded.

SpatiaLite Cookbook

Language bindings: Python
2011 January 28

Test environment
Linux Debian:
just to be sure to check an up-to-date state-of-the-art I've actually used Debian Squeeze (32 bit). So I'm actually
sure that all required packages are reasonably using the most recent version.

Python:
python-2.6.6 was already installed on my testbed system, so I was immediately ready to start my test.

pyspatialite connector:
the connector source is available for download at: http://code.google.com/p/pyspatialite/
I've actually downloaded the latest supported version: http://pyspatialite.googlecode.com/files/pyspatialite-
2.6.1.tar.gz
In order to build and install the pyspatialite connector I used the canonical Python scripts:

$ python setup.py build
... verbose output follows [suppressed] ...
$ su
python setup.py install

Very important notice: I soon discovered that simply using the standard build script wasn't enough: this way I got
an obsolete SpatiaLite v.2.3.1 and that's not at all a good thing.

Caveat
The most recent QGIS versions (1.6 / 1.7 trunk) are actually using SpatiaLite v.2.4.0 so any Python plugin using
the previous v.2.3.1 can easily cause conflicts due to version incompatilibiles.
And this fully accounts for any issue noticed by QGIS users.

Patching setup.py
I quickly discovered that supporting the most recent SpatiaLite v.2.4.0-RC4 was actually a piece of cake: I simply
had to change two lines in the setup.py script (line 87 and followings).

def get_amalgamation():
 """Download the Spatialite amalgamation if it isn't there, already."""
 if os.path.exists(AMALGAMATION_ROOT):
 return
 os.mkdir(AMALGAMATION_ROOT)
 print "Downloading amalgation."

 # find out what's current amalgamation ZIP file
 download_page = urllib.urlopen("http://www.gaia-gis.it/spatialite-2.4.0-
4/sources.html").read()

http://code.google.com/p/pyspatialite/
http://pyspatialite.googlecode.com/files/pyspatialite-2.6.1.tar.gz
http://pyspatialite.googlecode.com/files/pyspatialite-2.6.1.tar.gz

SpatiaLite Cookbook

 pattern = re.compile("(libspatialite-amalgamation.*?\.zip)")
 download_file = pattern.findall(download_page)[0]
 amalgamation_url = "http://www.gaia-gis.it/spatialite-2.4.0-4/"+ download_file
 zip_dir = string.replace(download_file,'.zip','')
 # and download it
 urllib.urlretrieve(amalgamation_url, "tmp.zip")

Once I applied such a trivial patch anything ran in the smoothest and most pleasant way.

Python sample program
spatialite_sample.py
importing pyspatialite
from pyspatialite import dbapi2 as db

creating/connecting the test_db
conn = db.connect('test_db.sqlite')

creating a Cursor
cur = conn.cursor()

testing library versions
rs = cur.execute('SELECT sqlite_version(), spatialite_version()')
for row in rs:
 msg = "> SQLite v%s Spatialite v%s" % (row[0], row[1])
 print msg

initializing Spatial MetaData
using v.2.4.0 this will automatically create
GEOMETRY_COLUMNS and SPATIAL_REF_SYS
sql = 'SELECT InitSpatialMetadata()'
cur.execute(sql)

creating a POINT table
sql = 'CREATE TABLE test_pt ('
sql += 'id INTEGER NOT NULL PRIMARY KEY,'
sql += 'name TEXT NOT NULL)'
cur.execute(sql)
creating a POINT Geometry column
sql = "SELECT AddGeometryColumn('test_pt',
" sql += "'geom', 4326, 'POINT', 'XY')"
cur.execute(sql)

creating a LINESTRING table
sql = 'CREATE TABLE test_ln ('
sql += 'id INTEGER NOT NULL PRIMARY KEY,'
sql += 'name TEXT NOT NULL)'
cur.execute(sql)
creating a LINESTRING Geometry column
sql = "SELECT AddGeometryColumn('test_ln', "
sql += "'geom', 4326, 'LINESTRING', 'XY')"
cur.execute(sql)

creating a POLYGON table
sql = 'CREATE TABLE test_pg ('
sql += 'id INTEGER NOT NULL PRIMARY KEY,'
sql += 'name TEXT NOT NULL)'
cur.execute(sql)
creating a POLYGON Geometry column
sql = "SELECT AddGeometryColumn('test_pg', "
sql += "'geom', 4326, 'POLYGON', 'XY')"
cur.execute(sql)

inserting some POINTs
please note well: SQLite is ACID and Transactional
so (to get best performance) the whole insert cycle
will be handled as a single TRANSACTION
for i in range(100000):
 name = "test POINT #%d" % (i+1)
 geom = "GeomFromText('POINT("
 geom += "%f " % (i / 1000.0)
 geom += "%f" % (i / 1000.0)
 geom += ")', 4326)"
 sql = "INSERT INTO test_pt (id, name, geom) "
 sql += "VALUES (%d, '%s', %s)" % (i+1, name, geom)
 cur.execute(sql)
conn.commit()

checking POINTs
sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), "
sql += "ST_Srid(geom) FROM test_pt"
rs = cur.execute(sql)
for row in rs:
 msg = "> Inserted %d entities of type " % (row[0])
 msg += "%s SRID=%d" % (row[1], row[2])
 print msg

inserting some LINESTRINGs
for i in range(100000):
 name = "test LINESTRING #%d" % (i+1)
 geom = "GeomFromText('LINESTRING("
 if (i%2) == 1:
 # odd row: five points
 geom += "-180.0 -90.0, "
 geom += "%f " % (-10.0 - (i / 1000.0))
 geom += "%f, " % (-10.0 - (i / 1000.0))
 geom += "%f " % (10.0 + (i / 1000.0))
 geom += "%f" % (10.0 + (i / 1000.0))
 geom += ", 180.0 90.0"
 else:
 # even row: two points
 geom += "%f " % (-10.0 - (i / 1000.0))
 geom += "%f, " % (-10.0 - (i / 1000.0))

SpatiaLite Cookbook

 geom += "%f " % (10.0 + (i / 1000.0))
 geom += "%f" % (10.0 + (i / 1000.0))
 geom += ")', 4326)"
 sql = "INSERT INTO test_ln (id, name, geom) "
 sql += "VALUES (%d, '%s', %s)" % (i+1, name, geom)
 cur.execute(sql)
conn.commit()

checking LINESTRINGs
sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), "
sql += "ST_Srid(geom) FROM test_ln"
rs = cur.execute(sql)
for row in rs:
 msg = "> Inserted %d entities of type " % (row[0])
 msg += "%s SRID=%d" % (row[1], row[2])
 print msg

inserting some POLYGONs
for i in range(100000):
 name = "test POLYGON #%d" % (i+1)
 geom = "GeomFromText('POLYGON(("
 geom += "%f " % (-10.0 - (i / 1000.0))
 geom += "%f, " % (-10.0 - (i / 1000.0))
 geom += "%f " % (10.0 + (i / 1000.0))
 geom += "%f, " % (-10.0 - (i / 1000.0))
 geom += "%f " % (10.0 + (i / 1000.0))
 geom += "%f, " % (10.0 + (i / 1000.0))
 geom += "%f " % (-10.0 - (i / 1000.0))
 geom += "%f, " % (10.0 + (i / 1000.0))
 geom += "%f " % (-10.0 - (i / 1000.0))
 geom += "%f" % (-10.0 - (i / 1000.0))
 geom += "))', 4326)"
 sql = "INSERT INTO test_pg (id, name, geom) "
 sql += "VALUES (%d, '%s', %s)" % (i+1, name, geom)
 cur.execute(sql)
conn.commit()

checking POLYGONs
sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), "
sql += "ST_Srid(geom) FROM test_pg"
rs = cur.execute(sql)
for row in rs:
 msg = "> Inserted %d entities of type " % (row[0])
 msg += "%s SRID=%d" % (row[1], row[2])
 print msg

rs.close()
conn.close()
quit()

$ python spatialite_sample.py

Telling the full story is boring and very few interesting: you can study and test the sample code by yourself, and
that's absolutely all.

SpatiaLite Cookbook

Language bindings: PHP
2011 January 28

Test environment
Linux Debian:
just to be sure to check an up-to-date state-of-the-art I've actually used Debian Squeeze (32 bit).
So I'm actually sure that all required packages are reasonably using the most recent version.

PHP and SQLite connector:
My Debian Virtual Machine had no Apache and PHP stuff already installed.
So I started my test installing the following packages:

apache2
php5-cli
php5-sqlite

Caveat
The most recent PHP 5.3 seems to be absolutely required in order to support SpatiaLite.
I've performed some further test on the oldest Debian Lenny, simply to immediately discover that PHP (and
sqlite) where so obsolete that using SpatiaLite was completely impossible.

I suppose that if you are strongly interested into using SpatiaLite updating to PHP 5.3 is absolutely required
before attempting any preliminary test.

Configuring PHP
I quickly discovered that using the default PHP configuration SpatiaLite cannot be dynamically loaded as an
extension to the basic SQLite connector.
At least the following change has to applied first into the /etc/php5/apache2/php.ini configuration script.

default php.ini:
[sqlite3]
;sqlite3.extension_dir =

updated php.ini:
[sqlite3]
sqlite3.extension_dir = /var/www/sqlite3_ext

The SQLite connector for PHP actually has a built-in capability to load dynamic extensions.
Anyway you must explicitly enable a given directory containing any extension to be dynamically loaded.

/etc/init.d/apache2 restart

After modifying the php.ini script restarting the Apache WEB server is absolutely required, so to materialize the

SpatiaLite Cookbook

new configuration.

mkdir /var/www/sqlite3_ext
cp /usr/local/lib/libspatialite.so /var/www/sqlite3_ext

Then I've simply created the /var/www/sqlite3_ext directory.
And finally I've copied the libspatialite.so shared library form /usr/local/lib into this directory.

Please note well: in order to perform all the above mentioned operations you must login as root

PHP sample program
SpatialiteSample.php
<html>
 <head>
 <title>Testing SpatiaLite on PHP</title>
 </head>
 <body>
 <h1>testing SpatiaLite on PHP</h1>

<?php
connecting some SQLite DB
we'll actually use an IN-MEMORY DB
so to avoid any further complexity;
an IN-MEMORY DB simply is a temp-DB
$db = new SQLite3(':memory:');

loading SpatiaLite as an extension
$db->loadExtension('libspatialite.so');

enabling Spatial Metadata
using v.2.4.0 this automatically initializes SPATIAL_REF_SYS
and GEOMETRY_COLUMNS
$db->exec("SELECT InitSpatialMetadata()");

reporting some version info
$rs = $db->query('SELECT sqlite_version()');
while ($row = $rs->fetchArray())
{
 print "<h3>SQLite version: $row[0]</h3>";
}
$rs = $db->query('SELECT spatialite_version()');
while ($row = $rs->fetchArray())
{
 print "<h3>SpatiaLite version: $row[0]</h3>";
}

creating a POINT table
$sql = "CREATE TABLE test_pt (";
$sql .= "id INTEGER NOT NULL PRIMARY KEY,";
$sql .= "name TEXT NOT NULL)";
$db->exec($sql);
creating a POINT Geometry column
$sql = "SELECT AddGeometryColumn('test_pt', ";
$sql .= "'geom', 4326, 'POINT', 'XY')";
$db->exec($sql);

creating a LINESTRING table
$sql = "CREATE TABLE test_ln (";
$sql .= "id INTEGER NOT NULL PRIMARY KEY,";
$sql .= "name TEXT NOT NULL)";
$db->exec($sql);
creating a LINESTRING Geometry column
$sql = "SELECT AddGeometryColumn('test_ln', ";
$sql .= "'geom', 4326, 'LINESTRING', 'XY')";
$db->exec($sql);

creating a POLYGON table
$sql = "CREATE TABLE test_pg (";
$sql .= "id INTEGER NOT NULL PRIMARY KEY,";
$sql .= "name TEXT NOT NULL)";
$db->exec($sql);
creating a POLYGON Geometry column
$sql = "SELECT AddGeometryColumn('test_pg', ";
$sql .= "'geom', 4326, 'POLYGON', 'XY')";
$db->exec($sql);

inserting some POINTs

SpatiaLite Cookbook

please note well: SQLite is ACID and Transactional
so (to get best performance) the whole insert cycle
will be handled as a single TRANSACTION
$db->exec("BEGIN");
for ($i = 0; $i < 10000; $i++)
{
 # for POINTs we'll use full text sql statements
 $sql = "INSERT INTO test_pt (id, name, geom) VALUES (";
 $sql .= $i + 1;
 $sql .= ", 'test POINT #";
 $sql .= $i + 1;
 $sql .= "', GeomFromText('POINT(";
 $sql .= $i / 1000.0;
 $sql .= " ";
 $sql .= $i / 1000.0;
 $sql .= ")', 4326))";
 $db->exec($sql);
}
$db->exec("COMMIT");

checking POINTs
$sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), ";
$sql .= "ST_Srid(geom) FROM test_pt";
$rs = $db->query($sql);
while ($row = $rs->fetchArray())
{
 # read the result set
 $msg = "Inserted ";
 $msg .= $row[0];
 $msg .= " entities of type ";
 $msg .= $row[1];
 $msg .= " SRID=";
 $msg .= $row[2];
 print "<h3>$msg</h3>";
}

inserting some LINESTRINGs
this time we'll use a Prepared Statement
$sql = "INSERT INTO test_ln (id, name, geom) ";
$sql .= "VALUES (?, ?, GeomFromText(?, 4326))";
$stmt = $db->prepare($sql);
$db->exec("BEGIN");
for ($i = 0; $i < 10000; $i++)
{
 # setting up values / binding
 $name = "test LINESTRING #";
 $name .= $i + 1;
 $geom = "LINESTRING(";
 if (($i%2) == 1)
 {
 # odd row: five points
 $geom .= "-180.0 -90.0, ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= " ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= ", ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= " ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= ", ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= " ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= ", 180.0 90.0";
 }
 else
 {
 # even row: two points
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= " ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= ", ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= " ";
 $geom .= 10.0 + ($i / 1000.0);
 }
 $geom .= ")";

 $stmt->reset();
 $stmt->clear();
 $stmt->bindValue(1, $i+1, SQLITE3_INTEGER);
 $stmt->bindValue(2, $name, SQLITE3_TEXT);
 $stmt->bindValue(3, $geom, SQLITE3_TEXT);
 $stmt->execute();
}
$db->exec("COMMIT");

SpatiaLite Cookbook

checking LINESTRINGs
$sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), ";
$sql .= "ST_Srid(geom) FROM test_ln";
$rs = $db->query($sql);
while ($row = $rs->fetchArray())
{
 # read the result set
 $msg = "Inserted ";
 $msg .= $row[0];
 $msg .= " entities of type ";
 $msg .= $row[1];
 $msg .= " SRID=";
 $msg .= $row[2];
 print "<h3>$msg</h3>";
}

insering some POLYGONs
this time too we'll use a Prepared Statement
$sql = "INSERT INTO test_pg (id, name, geom) ";
$sql .= "VALUES (?, ?, GeomFromText(?, 4326))";
$stmt = $db->prepare($sql);
$db->exec("BEGIN");
for ($i = 0; $i < 10000; $i++)
{
 # setting up values / binding
 $name = "test POLYGON #";
 $name .= $i + 1;
 $geom = "POLYGON((";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= " ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= ", ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= " ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= ", ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= " ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= ", ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= " ";
 $geom .= 10.0 + ($i / 1000.0);
 $geom .= ", ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= " ";
 $geom .= -10.0 - ($i / 1000.0);
 $geom .= "))";

 $stmt->reset();
 $stmt->clear();
 $stmt->bindValue(1, $i+1, SQLITE3_INTEGER);
 $stmt->bindValue(2, $name, SQLITE3_TEXT);
 $stmt->bindValue(3, $geom, SQLITE3_TEXT);
 $stmt->execute();
}
$db->exec("COMMIT");

checking POLYGONs
$sql = "SELECT DISTINCT Count(*), ST_GeometryType(geom), ";
$sql .= "ST_Srid(geom) FROM test_pg";
$rs = $db->query($sql);
while ($row = $rs->fetchArray())
{
 # read the result set
 $msg = "Inserted ";
 $msg .= $row[0];
 $msg .= " entities of type ";
 $msg .= $row[1];
 $msg .= " SRID=";
 $msg .= $row[2];
 print "<h3>$msg</h3>";
}

closing the DB connection
$db->close();
?>

 </body>
</html>

I saved this PHP sample script as: /var/www/SpatialiteSample.php

SpatiaLite Cookbook

Then I simply started my Firefox WEB browser requesting the corresponding URL:

And that's all.

Please note: may well be that using other different Linux distros (or Windows) adjusting any pathname as
appropriate for your specific platform should be required.

Author: Alessandro Furieri a.furieri@lqt.it
This work is licensed under the Attribution-ShareAlike 3.0 Unported (CC BY-
SA 3.0) license.

Permission is granted to copy, distribute and/or modify this document under the
terms of the
GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Filippo
Line

	SpatiaLite Cookbook
	Introduction
	Table of contents
	Kitchen tools and cooking techniques
	quick technical intro
	getting started [installing the software]
	building your first Spatial Database
	what's a Shapefile ?
	what's a Virtual Shapefile ? (and Virtual Tables ...)
	what's a Charset encoding ? (and why the hell have I to take care of such nasty things ?)
	what's this SRID stuff ? ... I've never heard this term before now ...
	executing your first SQL queries
	basics about SQL queries
	understanding aggregate functions

	Commonly used ingredients
	your first Spatial SQL queries
	more about Spatial SQL: WKT and WKB
	Spatial MetaData Tables
	viewing SpatiaLite layers in QGIS

	Family cooking
	recipe #1: creating a well designed DB
	recipe #2: your first JOIN queries
	recipe #3: more about JOIN
	recipe #4: about VIEW
	recipe #5: creating a new table (and related paraphernalia)
	recipe #6: creating a new Geometry column
	recipe #7: Insert, Update and Delete
	recipe #8: understanding Constraints
	recipe #9: ACIDity: undestranding Transactions
	recipe #10: wonderful R*Tree Spatial Index

	Haute cuisine
	recipe #11: Guinness Book of Records
	recipe #12: Neighbours
	recipe #13: Isolated Islands
	recipe #14: Populated Places vs Local Councils
	recipe #15: Tightly bounded Populated Places
	recipe #16: Railways vs Local Councils
	recipe #17: Railways vs Populated Places
	recipe #18: Railway Zones as Buffers
	recipe #19: merging Local Councils into Counties and so on ...
	recipe #20: Spatial Views
	Fine dining experience: Chez Dijkstra

	Desserts, spirits, tea and coffee
	System level performace hints
	Importing/Exporting Shapefiles (DBF, TXT ...)
	Language bindings: [C/C++, Java, Python, PHP ...]
	Language bindings: C/C++
	Language bindings: Java / JDBC
	Language bindings: Python
	Language bindings: PHP

