

Azure VM pricing vs Hetzner/TIMi pricing

Version v1.01 - 2024-12-2

From the Azure documentation available here:

... the virtual machines available inside Azure are classified in 9 different "Series":

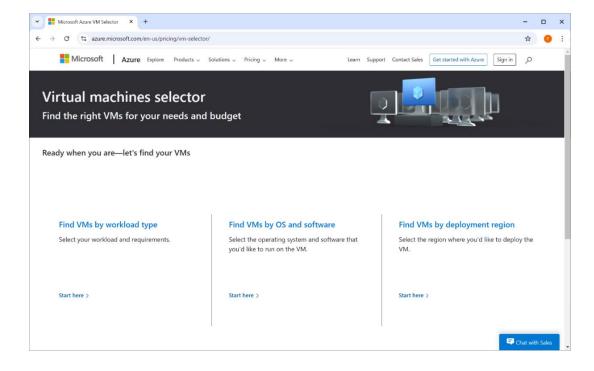
VM Series	vCPU Range	Memory (GB)	Purpose	
A-series	1 - 8	2 - 64	Entry-level, dev/test, small apps	
B-series	2 - 32	1 - 128	Burstable, cost-efficient workloads	
D-series	2 - 96	8 - 384	General-purpose, business apps	
E-series	2 - 128	16 - 672	Memory-intensive apps	
F-series	2 - 64	4 - 256	Compute-intensive workloads	
L-series	4 - 80	32 - 512	Storage-intensive workloads	
M-series	8 - 416	192 - 11,400	Extremely high-memory workloads	
N-series	6 - 96	56 - 672	GPU-based tasks (AI, ML, graphics)	
H-series	2 - 120	8 - 1200	High-performance computing (HPC)	

Here are the processors available in each of these series:

VM Series	Processor	vCPU Range	Memory Range (GB)	Key Features
A-series	Intel Xeon E5 family (E5-2673 v3 and v4), Intel Xeon Platinum 8370C and 8272CL, Intel Xeon 8171M (Ice Lake)	1-8	2 - 64	Budget-friendly, entry-level, consistent CPU performance
B-series	AMD EPYC 7763v (Genoa) and 7452, Intel Xeon Platinum 8473C (Sapphire Rapids) or 8370C (Ice Lake)	2 - 32	1 - 128	Burstable, credit-based CPU performance model
D-series	Intel Xeon Platinum 8573C (Emerald Rapids) and 8272CL (Cascade Lake), AMD EPYC 7763 (Milan), AMD's 4th Generation EPYC™ 9004	2 - 96	8 - 384	High CPU-to-memory ratio for general-purpose workloads
E-series	Intel Xeon Platinum 8370C (Ice Lake), AMD EPYC 7763 (Milan), AMD's fourth Generation EPYC™ 9004	2 - 128	16 - 672	Memory-optimized, great for relational databases and inmemory analytics
F-series	Intel Xeon Platinum 8272CL (Cascade Lake)	2 - 64	4 - 256	Compute-intensive workloads with a high CPU-to-memory ratio
L-series	Intel Xeon Platinum 8370C (Ice Lake), AMD EPYC 7763v (Milan).	4 - 80	32 - 512	Optimized for storage-intensive workloads with high IOPS
H-series	Intel Xeon Platinum 8168, 4th Gen AMD EPYC 7551 (Naples), AMD EPYC 7V12 (Genoa), AMD EPYC 9V33X (Genoa-X), AMD EPYC™ 7V73X (Milan-X), AMD EPYC 7V12	2 - 120	8 - 1200	High-performance computing (HPC), with enhanced interconnects for fast data

If we search the performances for each of these processors on <u>cpubenchmark.net</u>, we get (the higher the "Single thread rating", the better the CPU):

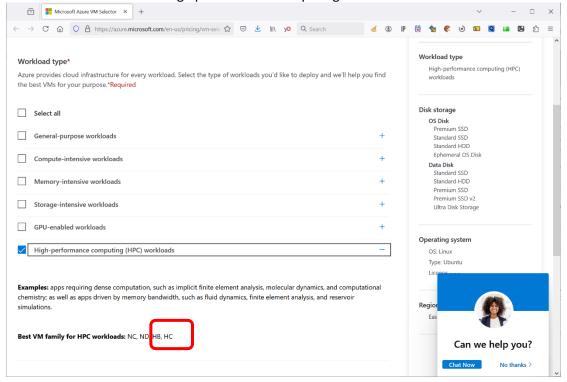
Processor	Single Thread Rating	Clock Speed [GHz]	URL
Intel Xeon E5-2673 v3	1,738	2.4	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+E5-2673+v3+%40+2.40GHz&id=2606
Intel Xeon E5-2673 v4	2,107	2.3	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+E5-2673+v4+%40+2.30GHz&id=2888
Intel Xeon Platinum 8575C	2,593	4.0	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+Platinum+8575C&id=6173
Intel Xeon Platinum 8370C (Ice Lake)	2,474	3.5	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+Platinum+8375C+%40+2.90GHz&id=4486

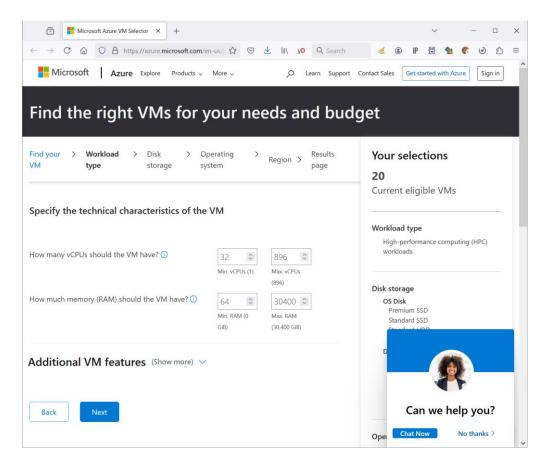


Intel Xeon Platinum 8272CL (Cascade Lake)	2,386	3.0	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+Platinum+8275CL+%40+3.00GHz&id=3624
Intel Xeon 8171M (Ice Lake)	2,222	2.6	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+Platinum+8171M+%40+2.60GHz&id=3220
AMD EPYC 7763v (Genoa)	2,517	2.45	https://www.cpubenchmark.net/cpu.php?cpu=AMD+E PYC+7763&id=4207
AMD EPYC 7452	1,995	2.35	https://www.cpubenchmark.net/cpu.php?cpu=AMD+E PYC+7452&id=3600
Intel Xeon Platinum 8280L	2,029	2.7	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+Platinum+8280+%40+2.70GHz&id=3662
AMD EPYC 7551	1,766	2.0	https://www.cpubenchmark.net/cpu.php?cpu=AMD+E PYC+7551&id=3089
AMD EPYC 7V12 (7443)	2,907	2.9	https://www.cpubenchmark.net/cpu.php?cpu=AMD+E PYC+7443&id=4708
Intel Xeon Platinum 8168	2,092	2.7	https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xe on+Platinum+8168+%40+2.70GHz&id=3111
4th Gen AMD EPYC 7Hx (HBv4)	2022	2.6	https://www.cpubenchmark.net/cpu.php?cpu=AMD+E PYC+7H12&id=3618&cpuCount=2
AMD EPYC 9V33X (Genoa-X) (9334)	2,367	2.7	https://www.cpubenchmark.net/cpu.php?cpu=AMD+E PYC+9334&id=5519

Inside Azure, the processor with the highest speed is thus **AMD EPYC 7V12 (7443)** with a score of 2907: These processors are only available inside the **HBv2-series**.

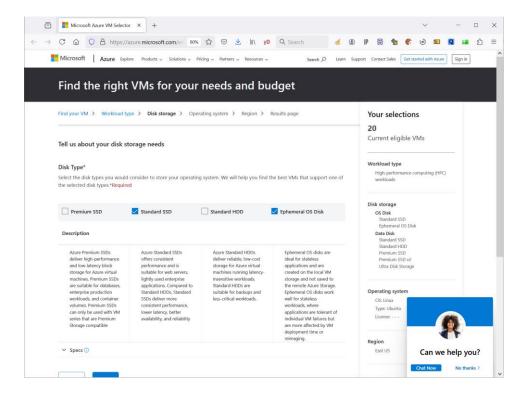
We'll now make a pricing simulation for a virtual machines based on a the **H series.** We start here:


https://azure.microsoft.com/en-us/pricing/vm-selector/

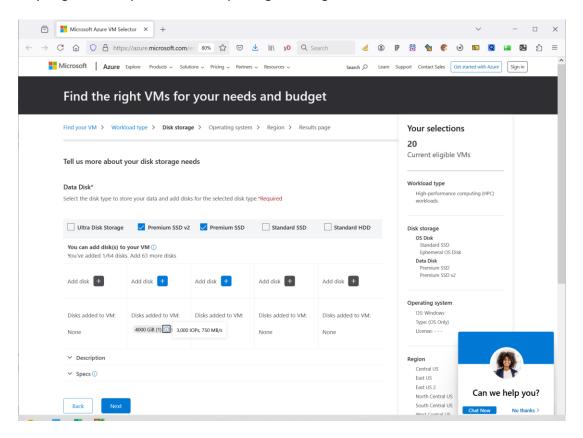


Here are the configuration steps for the Wizard on Azure:

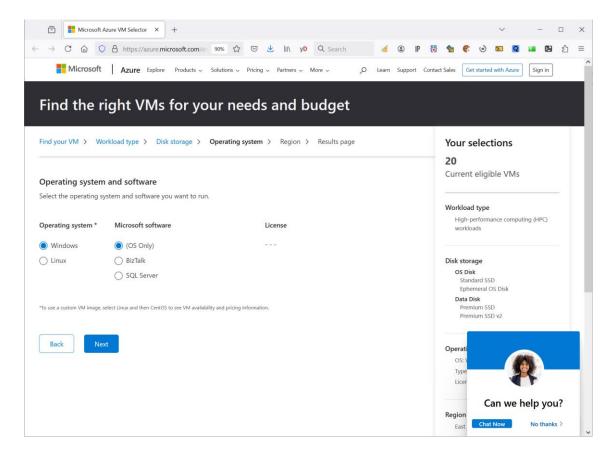
1. Select the "H series" for high performance computing load:



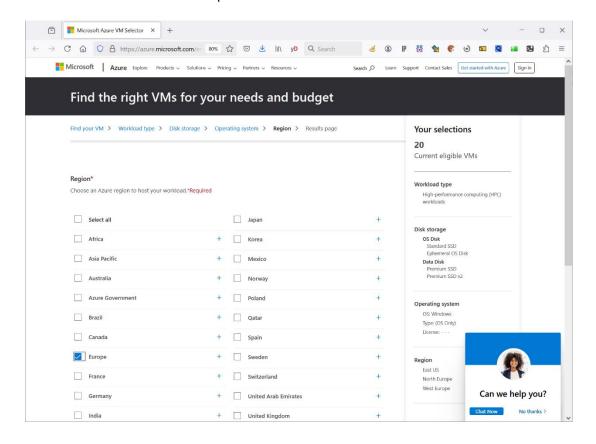
2. We want a machine with at least 32 cores and 64 GB of RAM:



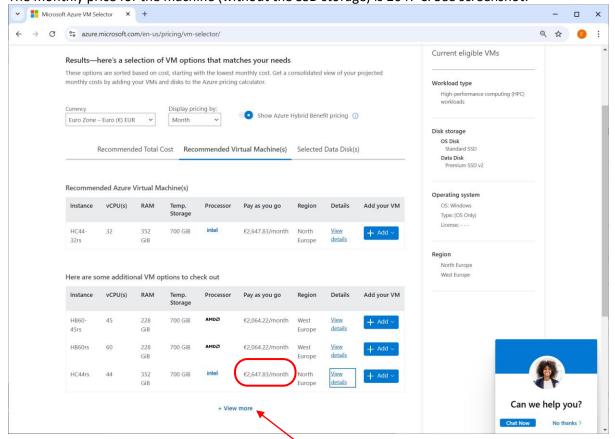
3. We want a machine with a fast SSD for the OS:



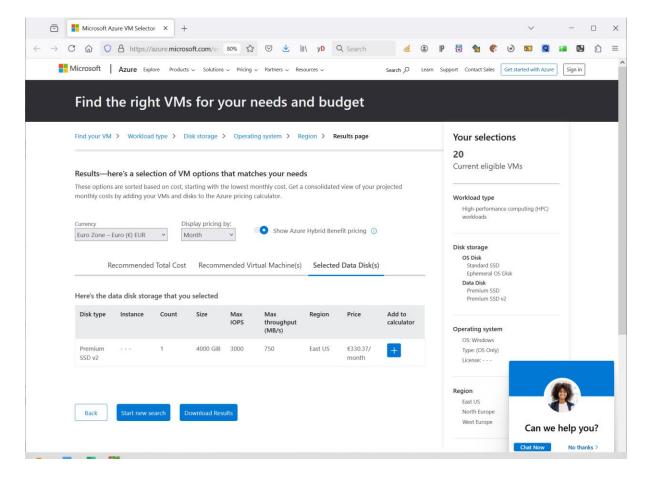
4. We want to store around 4 TB of data (same capacity as the machines on Hetzner): When we select this size, we can only get a SSD with an access-speed of 750 Mbyte/sec (i.e. quite slow). No way to get better speed without exploding the budget.



5. The OS on the machine should be Windows:



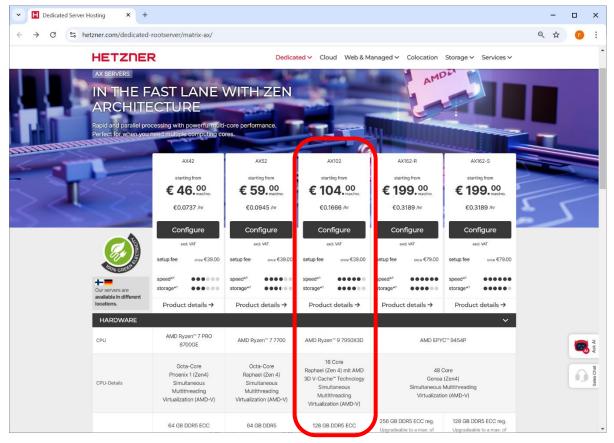
6. We want our machine in Europe:


We finally arrive at a proposition from the Azure-Wizard for some machine based on HB60rs series. The monthly price for the machine (without the SSD storage) is 2647 €: See screenshot:

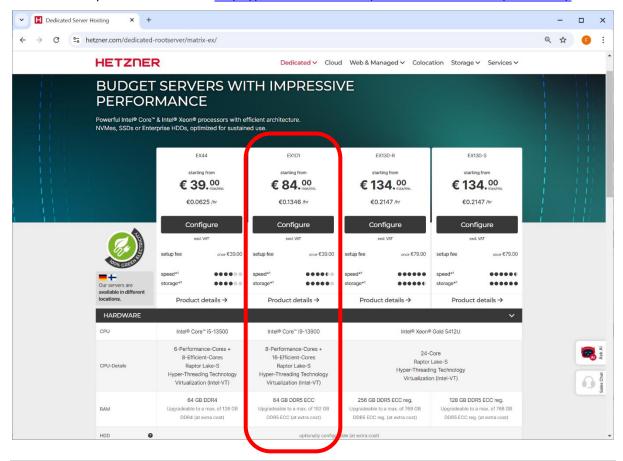
We tried to make many different other simulations that would allow us to get another type of instance with some CPUs. Actually, when you click here: , you can see more machines with really bad CPU's (AMD EPYC 7002 and 7003). The only instance that is slightly better that the others is from the series HC44rs that has an Intel Xeon 8168 processor (you can see the exact processors when clicking on the "View details") with a performance score of 2092.

In addition to the machine cost, the monthly storage cost is around 330 €:

Thus, the total monthly cost for the best Azure machine is 2647 + 330 = 2977 €/month

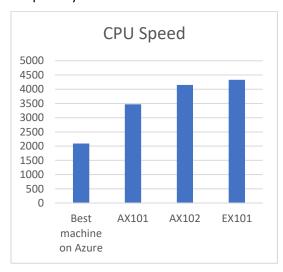

Let's now compare the best&most efficient machine from Azure to 2 machines readily available on Hetzner: AX102 and EX101. Since the machine from Fiberklaar is the AX101 (an older version from AX102), we'll also add it to the comparison.

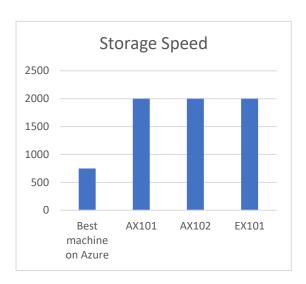
Here is a table with the 3 processors from Hetzner:


Processor	Single Thread Rating	Clock Speed	URL
AX101			https://www.cpubenchmark.net/cpu.php?cpu=A
AMD Ryzen 9 5950X	3469	3.4	MD+Ryzen+9+5950X&id=3862
AX102			https://www.cpubenchmark.net/cpu.php?id=523
AMD Ryzen 9 7950X3D	4150	4.2	4&cpu=AMD+Ryzen+9+7950X3D
EX101			https://www.cpubenchmark.net/cpu.php?id=517
Intel Core i9-13900	4330	5	6&cpu=Intel+Core+i9-13900

Here are the specs for the AX102: https://www.hetzner.com/dedicated-rootserver/matrix-ax/

Here are the specs for the EX101: https://www.hetzner.com/dedicated-rootserver/matrix-ex/





Here is the final comparison table between Hetzner and Azure:

	Best machine on Azure	AX101	AX102	EX101
CPU name	AMD EPYC 7551	AMD Ryzen 9 5950X	AMD Ryzen 9 7950X3D	Intel Core i9- 13900
CPU Speed	2092	3469	4150	4330
RAM	200 GB	128 GB	128 GB	64 GB
Storage capacity	4 TB	4 TB	4 TB	4 TB
Storage Speed	750 MB/sec	2000 MB/sec	2000 MB/sec	2000 MB/sec
Monthly Price	2977 €	102 €	104 €	84 €

Graphically:

Monthly Price:

We recommend to use the EX101 server on Hetzner because it is:

• 35.4 times cheaper than the best available Azure server

2.07 times faster in terms of CPU than the best available Azure server

• 2.66 times faster in terms of Storage-Access-Speed (to read & write data on SSD)

than the best available Azure server

• The Hetzner server has enough RAM (64GB) to do everything and anything with TIMi.